NOTE ON THE DISCRETE OSTROWSKI-GRUSS TYPE INEQUALITY

被引:0
|
作者
Miao, Yu [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang City 453007, Henan Province, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2009年 / 3卷 / 01期
关键词
Inequality; Ostrowski-Gruss type; random variable;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present note, we establish several new discrete Ostrowski-Gruss type inequalities which extend some known results.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 50 条
  • [31] NEW WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES ON TIME SCALES
    Liu, Wenjun
    Tuna, Adnan
    Jiang, Yong
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2014, 60 (01): : 57 - 76
  • [32] Improvement and further generalization of inequalities of Ostrowski-Gruss type
    Matic, M
    Pecaric, J
    Ujevic, N
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) : 161 - 175
  • [33] Weighted Ostrowski, Ostrowski-Gruss and Ostrowski-Cebysev type inequalities on time scales
    Tuna, Adnan
    Jiang, Yong
    Liu, Wenjun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (1-2): : 81 - 102
  • [34] Some generalized Ostrowski-Gruss type integral inequalities
    Feng, Qinghua
    Meng, Fanwei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (03) : 652 - 659
  • [35] OSTROWSKI-GRUSS TYPE INEQUALITIES AND A 2D OSTROWSKI TYPE INEQUALITY ON TIME SCALES INVOLVING A COMBINATION OF Δ-INTEGRAL MEANS
    Kermausuor, Seth
    Nwaeze, Eze R.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 127 - 143
  • [36] A new Ostrowski-Gruss inequality involving 3n knots
    Vu Nhat Huy
    Quoc-Anh Ngo
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 272 - 282
  • [37] New Ostrowski-Gruss type inequalities with the derivatives bounded by functions
    Feng, Qinghua
    Meng, Fanwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [38] An Ostrowski-Gruss type inequality for twice differentiable mappings using a multi-branch Peano kernel
    Sofo, A
    Dragomir, SS
    INEQUALITY THEORY AND APPLICATIONS, VOL 1, 2001, : 281 - 294
  • [39] Generalizations of Ostrowski-Gruss type integral inequalities for twice differentiable mappings
    Park, Jaekeun
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 10 - 23
  • [40] GENERALIZED WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES ON TIME SCALES VIA A PARAMETER FUNCTION
    Kermausuor, Seth
    Nwaeze, Eze R.
    Torres, Delfim F. M.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 1185 - 1199