Novel triple-phase composite cathode materials for proton-conducting solid oxide fuel cells

被引:10
|
作者
Jiang, Qiumei [1 ]
Cheng, Jigui [1 ]
Wang, Rui [1 ]
Fan, Yumeng [1 ]
Gao, Jianfeng [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
关键词
Proton-conducting solid oxide fuel cells; Composite cathode; Proton conductor; Sinterability; Electrochemical performance; LOW-TEMPERATURE SOFCS; THERMAL-EXPANSION; ELECTROCHEMICAL PERFORMANCE; PEROVSKITE;
D O I
10.1016/j.jpowsour.2012.01.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ce0.8Sm0.2O2-delta (SDC), BaZr0.1Ce0.7Y0.2O3-delta (BZCY) powders are mechanically mixed with Smo.sSro.sC003_,s (SSC) powders to prepare triple-phase SSC-xSDC-(0.3 - x) BZCY (x = 0.1, 0.15, 0.2) composite cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs). The SSC, SDC and BZCY powders are all synthesized via aqueous gelcasting method. Chemical compatibility, sinterability, microstructure, linear thermal expansion coefficients, electrical conductivity and electrochemical performance of the composite cathode materials are investigated and compared with single phase SSC and dual-phase SSC-0.3BZCY composite cathode materials. The results reveal that there have no observable chemical reactions among SSC. SDC and BZCY after co-firing the powder mixes at 1100 degrees C for 3 h. Adding SDC and BZCY into SSC material decreases open porosity, increases the shrinkage rate of the sintered SSC materials and significantly reduces thermal expansion mismatch between BZCY and SSC materials. Electrical conductivity of the triple-phase composite cathode samples ranges from about 130.8S cm(-1) to 342.3 S cm(-1) at temperature 450-800 degrees C, and increases as SDC content increases. Polarization resistances between the triple-phase composite cathode materials and the BZCY electrolyte decrease with increasing SDC content. The polarization resistance is significantly reduced from 1.57 Omega cm(2) for dual-phase SSC-0.3BZCY materials to 0.77 Omega cm(2) for triple-phase SSC-0.2SDC-0.1BZCY materials under open circuit conductions at 700 degrees C in air. The preliminary test results have suggested that triple-phase SSC-xSDC-(0.3 - x) BZCY (x= 0.1, 0.15, 0.2) materials may be a potential candidate of cathode material for H-SOFCs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
  • [21] Scientometric review of proton-conducting solid oxide fuel cells
    Bello, Idris Temitope
    Zhai, Shuo
    Zhao, Siyuan
    Li, Zheng
    Yu, Na
    Ni, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) : 37406 - 37428
  • [22] A Stable and Efficient Cathode for Fluorine-Containing Proton-Conducting Solid Oxide Fuel Cells
    Xie, Yun
    Shi, Nai
    Huan, Daoming
    Tan, Wenzhou
    Zhu, Junfa
    Zheng, Xusheng
    Pan, Haibin
    Peng, Ranran
    Xia, Changrong
    CHEMSUSCHEM, 2018, 11 (19) : 3423 - 3430
  • [23] Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: A mini-review
    Tao, Zhiruo
    Xu, Xi
    Bi, Lei
    ELECTROCHEMISTRY COMMUNICATIONS, 2021, 129
  • [24] Cross-stacking crystal structural configuration of integrated cathode materials for proton-conducting solid oxide fuel cells
    Gong, Jun-Yi
    Yang, Dan-Dan
    Liu, Wei
    Hou, Jie
    RARE METALS, 2024, 43 (11) : 6088 - 6095
  • [25] New Insights into the Proton-Conducting Solid Oxide Fuel Cells
    Cao J.
    Ji Y.
    Shao Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (01): : 83 - 92
  • [26] Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance
    Xu, Xi
    Wang, Huiqiang
    Fronzi, Marco
    Wang, Xianfen
    Bi, Lei
    Traversa, Enrico
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20624 - 20632
  • [27] Cross-stacking crystal structural configuration of integrated cathode materials for proton-conducting solid oxide fuel cells
    JunYi Gong
    DanDan Yang
    Wei Liu
    Jie Hou
    Rare Metals, 2024, 43 (11) : 6088 - 6095
  • [28] A novel layered perovskite cathode for proton conducting solid oxide fuel cells
    Ding, Hanping
    Xue, Xingjian
    Liu, Xingqin
    Meng, Guangyao
    JOURNAL OF POWER SOURCES, 2010, 195 (03) : 775 - 778
  • [29] Novel layered perovskite GdBaCuFeO5+x as a potential cathode for proton-conducting solid oxide fuel cells
    Zhang, Xiaozhen
    Zhou, Jianer
    Wang, Yongqing
    IONICS, 2013, 19 (06) : 941 - 945
  • [30] Novel layered perovskite GdBaCuFeO5+x as a potential cathode for proton-conducting solid oxide fuel cells
    Xiaozhen Zhang
    Jianer Zhou
    Yongqing Wang
    Ionics, 2013, 19 : 941 - 945