A simple solution of the Bratu problem

被引:64
|
作者
Mohsen, A. [1 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12211, Egypt
关键词
Bratu's problem; Nonlinear partial differential equations; Standard finite difference; Nonstandard finite difference; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; NONLINEAR-SYSTEMS; ANALYTIC APPROACH; SPLINE METHOD; CONTINUATION; BIFURCATION; EXISTENCE; EQUATIONS;
D O I
10.1016/j.camwa.2013.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A brief survey of the properties and different treatments of the one-dimensional (1D) and (2D) Bratu problems is presented. Different iterative treatments of the resulting nonlinear system of equations are discussed. The finite-difference treatment of the problem is considered. Nonstandard finite-difference methods with a simple sinusoidal starting function having an appropriate amplitude are recommended. Bounds on the amplitude for yielding both lower and upper solutions are given. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [21] SIMPLE SOLUTION OF A SENSITIVE PROBLEM
    MULLICK, SC
    JOURNAL OF PROSTHETIC DENTISTRY, 1983, 49 (06): : 862 - 862
  • [22] A simple solution to a complex problem
    Magdalena Skipper
    Nature Reviews Genetics, 2003, 4 : 929 - 929
  • [23] On the solutions of the fractional Bratu's problem
    Alchikh, R.
    Khuri, S. A.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (06) : 1093 - 1107
  • [24] A SIMPLE SOLUTION TO AN EXPENSIVE PROBLEM
    HUGHES, G
    PUBLIC WORKS, 1983, 114 (09): : 98 - 99
  • [25] A simple solution to the Mathieu A problem
    Mesnager, M.
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1917, 164 (07): : 302 - 305
  • [26] A SOLUTION TO A SIMPLE RENDEZVOUS PROBLEM
    JACOBS, ME
    LAVI, A
    IEEE SPECTRUM, 1965, 2 (03) : 52 - &
  • [27] A NOTE ON TWO DIMENSIONAL BRATU PROBLEM
    Odejide, S. A.
    Aregbesola, Y. A. S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2006, 29 : 49 - 56
  • [28] Dynamics of the solution of Bratu's equation
    Caglar, Hikmet
    Caglar, Nazan
    Ozer, Mehmet
    Valaristos, Antonios
    Miliou, Amalia N.
    Anagnostopoulos, Antonios N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E672 - E678
  • [29] An iterative finite difference method for approximating the two-branched solution of Bratu's problem
    Ben-Romdhane, Mohamed
    Temimi, Helmi
    Baccouchb, Mahboub
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 62 - 76
  • [30] Iterative differential quadrature solutions for Bratu problem
    Ragb, Ola
    Seddek, L. F.
    Matbuly, M. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (02) : 249 - 257