Semi-supervised Image Annotation with Parallel Graph Convolutional Networks

被引:0
|
作者
Shao, Qianqian [1 ]
Wang, Mengke [1 ]
Li, Jiaoyue [1 ]
Liu, Weifeng [2 ]
Zhang, Kai [3 ]
Liu, Baodi [2 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
[3] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
关键词
Semi-supervised; Parallel Graph Convolutional Networks; Multi-graph; Image Annotation; CNN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic image annotation has increasingly exerted a tremendous fascination on researchers with the development of digital imaging in recent years. First, most works exploit the sufficient labeled data to train the models and trigger the unfavorable experimental performance in semi-supervised learning. Second, some examinations solve the semi-supervised problem only by a samples graph or tags graph, limiting in improving the annotation results owing to the incomplete data structure. To this end, we propose a method called "Semi-supervised Image Annotation with Parallel Graph Convolutional Networks (SPGCN)". This algorithm combines graph convolutional networks (GCN) with image annotation to promote annotation performance under semi-supervised learning. Furthermore, SPGCN, connecting the tags graph with the samples graph, is proposed to improve annotation results, further considering tags' distribution and features' distribution to aggregate the features. Experiments on three benchmark image annotation datasets show that our approach outperforms other existing state-of-the-art methods.
引用
收藏
页码:7415 / 7420
页数:6
相关论文
共 50 条
  • [11] Semi-supervised Learning with Graph Convolutional Networks Based on Hypergraph
    Li, Yangding
    Wan, Yingying
    Liu, Xingyi
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2629 - 2644
  • [12] Semi-supervised Learning with Graph Learning-Convolutional Networks
    Jiang, Bo
    Zhang, Ziyan
    Lin, Doudou
    Tang, Jin
    Luo, Bin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11305 - 11312
  • [13] Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
    Li, Qimai
    Han, Zhichao
    Wu, Xiao-Ming
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3538 - 3545
  • [14] Adaptive graph convolutional collaboration networks for semi-supervised classification
    Fu, Sichao
    Wang, Senlin
    Liu, Weifeng
    Liu, Baodi
    Zhou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    Information Sciences, 2022, 611 : 262 - 276
  • [15] Semi-supervised User Geolocation via Graph Convolutional Networks
    Rahimi, Afshin
    Cohn, Trevor
    Baldwin, Timothy
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 2009 - 2019
  • [16] Image Annotation with Semi-Supervised Clustering
    Sayar, Ahmet
    Yannan-Vural, Fatos T.
    2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 517 - 520
  • [17] Semi-Supervised Learning on Bi-Relational Graph for Image Annotation
    Hien Duy Pham
    Kim, Kye-Hyeon
    Choi, Seungjin
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2465 - 2470
  • [18] Image Annotation With Semi-Supervised Clustering
    Sayar, Ahmet
    Vural, Fatos T. Yarman
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 12 - +
  • [19] Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification
    Zhuang, Chenyi
    Ma, Qiang
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 499 - 508
  • [20] Hybrid Graph Convolutional Network for Semi-Supervised Retinal Image Classification
    Zhang, Guanghua
    Pan, Jing
    Zhang, Zhaoxia
    Zhang, Heng
    Xing, Changyuan
    Sun, Bin
    Li, Ming
    IEEE ACCESS, 2021, 9 : 35778 - 35789