Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas

被引:141
|
作者
Laurenzi, Ian J. [1 ]
Jersey, Gilbert R. [1 ]
机构
[1] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA
关键词
NATURAL-GAS; FOOTPRINT;
D O I
10.1021/es305162w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO(2)eq/MWh (80% confidence interval: 450-567 kg CO(2)eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation
引用
收藏
页码:4896 / 4903
页数:8
相关论文
共 50 条
  • [41] Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions
    Hao, Han
    Liu, Feiqi
    Liu, Zongwei
    Zhao, Fuquan
    APPLIED ENERGY, 2016, 181 : 391 - 398
  • [42] Life-Cycle Fossil Energy Consumption and Greenhouse Gas Emissions of Bioderived Chemicals and Their Conventional Counterparts
    Adom, Felix
    Dunn, Jennifer B.
    Han, Jeongwoo
    Sather, Norm
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) : 14624 - 14631
  • [43] Life cycle greenhouse gas emissions from geothermal electricity production
    Sullivan, J. L.
    Wang, M. Q.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2013, 5 (06)
  • [44] At the intersection of life cycle assessment and indirect greenhouse gas emissions accounting
    Amma Asantewaa Agyei Boakye
    Terrie Boguski
    Sarah Cashman
    Christoph Koffler
    Ashley Kreuder
    Manish Kumar
    Naveen Kumar Vipparla
    Lisa Peterson
    The International Journal of Life Cycle Assessment, 2023, 28 : 321 - 335
  • [45] Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea
    Georg Cichorowski
    Bettina Joa
    Heidi Hottenroth
    Mario Schmidt
    The International Journal of Life Cycle Assessment, 2015, 20 : 426 - 439
  • [46] Revealing the life cycle greenhouse gas emissions of materials: The Japanese case
    Dente, Sebastien M. R.
    Aoki-Suzuki, Chika
    Tanaka, Daisuke
    Hashimoto, Seiji
    RESOURCES CONSERVATION AND RECYCLING, 2018, 133 : 395 - 403
  • [47] A review on the quantification of life cycle greenhouse gas emissions at urban scale
    Ghaemi, Zahra
    Smith, Amanda D.
    JOURNAL OF CLEANER PRODUCTION, 2020, 252
  • [48] The greenhouse gas emissions of power transformers based on life cycle analysis
    Guo, Hong
    Gao, Yuting
    Li, Junhao
    ENERGY REPORTS, 2022, 8 : 413 - 419
  • [49] Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea
    Cichorowski, Georg
    Joa, Bettina
    Hottenroth, Heidi
    Schmidt, Mario
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2015, 20 (04): : 426 - 439
  • [50] Energy use and greenhouse gas emissions in: The life cycle of CdTe photovoltaics
    Fthenakis, Vasilis M.
    Kim, Hyung Chul
    LIFE-CYCLE ANALYSIS TOOLS FOR GREEN MATERIALS AND PROCESS SELECTION, 2006, 895 : 83 - +