A priori local error estimation with adaptive time-stepping

被引:0
|
作者
Ruge, P [1 ]
机构
[1] Tech Univ Dresden, Fak Bauingenieurwesen, D-01062 Dresden, Germany
来源
关键词
adaptive time-stepping; a priori error estimator; Pade series expansions;
D O I
10.1002/(SICI)1099-0887(199907)15:7<479::AID-CNM262>3.0.CO;2-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An a priori local error estimator for one-step implicit time-stepping schemes of Padi type is presented; such algorithms are widely used in structural dynamics. The proper time step h to be done can be calculated by matching a given local accuracy. The numerical process to evaluate h is straightforward and explicit. A simple example shows some significant features of the method presented. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:479 / 491
页数:13
相关论文
共 50 条
  • [31] Defeasible time-stepping
    Wedemann, RS
    Barbosa, VC
    Donangelo, R
    PARALLEL COMPUTING, 1999, 25 (04) : 461 - 489
  • [32] Toward a simple and accurate Lagrangian-based error estimator for the BDF algorithms and adaptive time-stepping
    Wang, Yazhou
    Luo, Dehong
    Zhang, Xuelin
    Wang, Zhitao
    Chen, Hui
    Zhang, Xiaobo
    Xie, Ningning
    Mei, Shengwei
    Xue, Xiaodai
    Zhang, Tong
    Tamma, Kumar K.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2023, 33 (12) : 4101 - 4127
  • [33] A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations
    Dominik Schötzau
    Thomas P. Wihler
    Numerische Mathematik, 2010, 115 : 475 - 509
  • [34] Algorithms and Data Structures for Multi-Adaptive Time-Stepping
    Jansson, Johan
    Logg, Anders
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03):
  • [35] Adaptive time-stepping Monte Carlo integration of Coulomb collisions
    Sarkimaki, K.
    Hirvijoki, E.
    Terava, J.
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 374 - 383
  • [36] A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations
    Schoetzau, Dominik
    Wihler, Thomas P.
    NUMERISCHE MATHEMATIK, 2010, 115 (03) : 475 - 509
  • [37] An Adaptive Time-Stepping Algorithm for the Allen-Cahn Equation
    Lee, Chaeyoung
    Park, Jintae
    Kwak, Soobin
    Kim, Sangkwon
    Choi, Yongho
    Ham, Seokjun
    Kim, Junseok
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [38] AN ADAPTIVE TIME-STEPPING SCHEME FOR THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS
    CHEN, H
    KREMPL, E
    COMPUTERS & STRUCTURES, 1986, 22 (04) : 573 - 578
  • [39] AN ADAPTIVE TIME-STEPPING ALGORITHM FOR QUASI-STATIC PROCESSES
    VANDENBOOGAARD, AH
    DEBORST, R
    VANDENBOGERT, PAJ
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (10): : 837 - 844
  • [40] An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation
    Zhang, Zhengru
    Qiao, Zhonghua
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (04) : 1261 - 1278