On the chromatic number of random graphs

被引:23
|
作者
Coja-Oghlan, Amin [1 ]
Panagiotou, Konstantinos [2 ]
Steger, Angelika [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
关键词
random graphs; chromatic number;
D O I
10.1016/j.jctb.2007.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the classical Erdos-Renyi model of random graphs G(n,p). We show that for p = p(n) <= n(-3/4-delta), for any fixed delta > 0, the chromatic number chi(G(n,p)) is a.a.s. l, l + 1, or l + 2, where l is the maximum integer satisfying 2(l - 1) log(l - 1) <= p(n - 1). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:980 / 993
页数:14
相关论文
共 50 条
  • [11] On the chromatic number of random geometric graphs
    Colin Mcdiarmid
    Tobias Müller
    Combinatorica, 2011, 31 : 423 - 488
  • [12] The chromatic number of random Borsuk graphs
    Kahle, Matthew
    Martinez-Figueroa, Francisco
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (03) : 838 - 850
  • [13] The chromatic number of dense random graphs
    Heckel, Annika
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (01) : 140 - 182
  • [14] On the strong chromatic number of random graphs
    Loh, Po-Shen
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 271 - 286
  • [15] The chromatic number of squares of random graphs
    Garapaty, Kalyan
    Lokshtanov, Daniel
    Maji, Hemanta K.
    Pothen, Alex
    JOURNAL OF COMBINATORICS, 2023, 14 (04) : 507 - 537
  • [16] On the chromatic number of random regular graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    Hetterich, Samuel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 367 - 439
  • [17] ON THE CHROMATIC NUMBER OF RANDOM GEOMETRIC GRAPHS
    Mcdiarmid, Colin
    Muller, Tobias
    COMBINATORICA, 2011, 31 (04) : 423 - 488
  • [18] On the Concentration of the Chromatic Number of Random Graphs
    Surya, Erlang
    Warnke, Lutz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [19] The set chromatic number of random graphs
    Dudek, Andrzej
    Mitsche, Dieter
    Pralat, Pawel
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 61 - 70
  • [20] Random lifts of graphs: Independence and chromatic number
    Amit, A
    Linial, N
    Matousek, J
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 1 - 22