Bypass transition and spot nucleation in boundary layers

被引:39
|
作者
Kreilos, Tobias [1 ,2 ]
Khapko, Taras [3 ,4 ]
Schlatter, Philipp [3 ,4 ]
Duguet, Yohann [5 ]
Henningson, Dan S. [3 ,4 ]
Eckhardt, Bruno [2 ,6 ]
机构
[1] Ecole Polytech Fed Lausanne, Emergent Complex Phys Syst Lab ECPS, CH-1015 Lausanne, Switzerland
[2] Philipps Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[3] Royal Inst Technol, KTH Mech, Linne FLOW Ctr, SE-10044 Stockholm, Sweden
[4] SeRC, Stockholm, Sweden
[5] Univ Paris Saclay, Univ Paris Sud, LIMSI CNRS, F-91405 Orsay, France
[6] Delft Univ Technol, JM Burgersctr, NL-2628 CD Delft, Netherlands
来源
PHYSICAL REVIEW FLUIDS | 2016年 / 1卷 / 04期
基金
美国国家科学基金会;
关键词
FREE-STREAM TURBULENCE; PIPE-FLOW; INTERMITTENCY; MODEL;
D O I
10.1103/PhysRevFluids.1.043602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] PREDICTING ROUGH WALL HEAT TRANSFER AND SKIN FRICTION IN TRANSITIONAL BOUNDARY LAYERS - A NEW CORRELATION FOR BYPASS TRANSITION ONSET
    Lorenz, M.
    Schulz, A.
    Bauer, H. -J.
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 4, PTS A AND B, 2012, : 819 - 832
  • [42] Bypass Laminar‐Turbulent Transition in a Thermal Boundary Layer
    E. Ya. Épik
    Journal of Engineering Physics and Thermophysics, 2001, 74 (4) : 982 - 991
  • [43] Streak breakdown during bypass transition in a boundary layer
    de Lange, H. C.
    Mans, J.
    EXPERIMENTAL FLUID MECHANICS 2009, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE, 2009, : 10 - 19
  • [44] SUBHARMONIC TRANSITION SPECTRA GENERATION AND TRANSITION PREDICTION IN BOUNDARY-LAYERS
    ZELMAN, MB
    MASLENNIKOVA, II
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1993, 12 (02) : 161 - 174
  • [45] Dynamics of the phase transition boundary in the presence of nucleation and growth of crystals
    Alexandrov, D. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (34)
  • [46] Spot concentrations of large-amplitude disturbances in laminar boundary layers
    Brown, SN
    Smith, FT
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1999, 52 : 269 - 281
  • [47] PSE as applied to problems of transition in compressible boundary layers
    张永明
    周恒
    Applied Mathematics and Mechanics(English Edition), 2008, (07) : 833 - 840
  • [48] Transition in Hypersonic Boundary Layers: Role of Dilatational Waves
    Zhu, Yiding
    Zhang, Chuanhong
    Chen, Xi
    Yuan, Huijing
    Wu, Jiezhi
    Chen, Shiyi
    Lee, Cunbiao
    Gad-el-Hak, Mohamed
    AIAA JOURNAL, 2016, 54 (10) : 3039 - 3049
  • [49] THEORETICAL ASPECTS OF TRANSITION AND TURBULENCE IN BOUNDARY-LAYERS
    SMITH, FT
    AIAA JOURNAL, 1993, 31 (12) : 2220 - 2226
  • [50] Stability and transition of three-dimensional boundary layers
    Saric, WS
    Reed, HL
    White, EB
    ANNUAL REVIEW OF FLUID MECHANICS, 2003, 35 (35) : 413 - 440