Ultra-high molecular weight polyethylene with hybrid porous structure

被引:13
|
作者
Lermontov, Sergey A. [1 ]
Maksimkin, Aleksey V. [1 ,2 ]
Sipyagina, Nataliya A. [1 ]
Malkova, Alena N. [1 ]
Kolesnikov, Evgeniy A. [2 ]
Zadorozhnyy, Mikhail Yu [2 ]
Straumal, Elena A. [1 ]
Dayyoub, Tarek [2 ]
机构
[1] Russian Acad Sci, Inst Physiol Act Cpds, 1 Severnij Pr, Chernogolovka 142432, Russia
[2] Natl Univ Sci & Technol MISIS, Leninsky Pr 4, Moscow 119049, Russia
基金
俄罗斯科学基金会;
关键词
UHMWPE; Hybrid porous structure; Supercritical extraction; SUPERCRITICAL CARBON-DIOXIDE; POLYMERS; SCAFFOLDS; BEHAVIOR;
D O I
10.1016/j.polymer.2020.122744
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel method of a hybrid porous structure preparation in UHMWPE was developed. A porous structure consisted of large 50-900 mu m and medium-size 50 nm-4 mu m macropores together with mesopores. The polymodal structure was prepared via water leaching of UHMWPE-NaCl composite followed by o-xylene treatment at a temperature of 99-103 degrees C with further supercritical drying in CO2. Scanning electron micrograph showed the formation of additional porous structure on the large macropores' walls surface formed by lamellar crystals. The size and quantity of the lamellar crystals depended on the heating temperature and could be varied over a wide range. The formation of the hybrid porous structure in UHMWPE was accompanied by a significant increase in the crystallinity degree (up to 81%) and specific surface area (up to 65 m(2)/g). The mechanical behavior of the UHMWPE with hybrid porous structure was investigated by DMA. The change in the UHMWPE crystal structure led to a change in the UHMWPE relaxation behavior and to an increase of damping ability.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    Gibbs, C.
    Bender, J. W.
    TRIBOLOGY LETTERS, 2006, 22 (01) : 85 - 93
  • [22] Radiation induced modifications in ultra-high molecular weight polyethylene
    Stephens, C. P.
    Benson, R. S.
    Chipara, M.
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (19-20): : 8230 - 8236
  • [23] Tailored bimodal ultra-high molecular weight polyethylene particles
    Lafleur, Sarah
    Berthoud, Romain
    Ensinck, Richard
    Cordier, Astrid
    De Cremer, Gert
    Philippaerts, An
    Bastiaansen, Kees
    Margossian, Tigran
    Severn, John R.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (15) : 1645 - 1656
  • [24] Stabilisation of ultra-high molecular weight polyethylene with Vitamin E
    Bracco, P.
    Brunella, V.
    Zanetti, M.
    Luda, M. P.
    Costa, L.
    POLYMER DEGRADATION AND STABILITY, 2007, 92 (12) : 2155 - 2162
  • [25] The crosslinked ultra-high molecular weight polyethylene: Risk and limitation
    Costa, L
    Bracco, P
    del Prever, EMB
    BIOCERAMICS IN JOINT ARTHROPLASTY, 2004, : 89 - 92
  • [26] Tribological properties and structure of ultra-high molecular weight polyethylene after gamma irradiation
    Xiong, D.
    Ma, R.
    Lin, J.
    Wang, N.
    Jin, Z. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2007, 221 (J3) : 315 - 320
  • [27] Structure and mechanical properties of self-reinforced ultra-high molecular weight polyethylene
    Chukov, D. I.
    Kharitonov, A. P.
    Tcherdyntsev, V. V.
    Zherebtsov, D. D.
    Maksimkin, A. V.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (12) : 1689 - 1698
  • [28] Evaluation of Sequentially Crosslinked Ultra-High Molecular Weight Polyethylene
    Morrison, M. L.
    Jani, S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 90B (01) : 87 - 100
  • [29] Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene
    Tan, Chen
    Chen, Changle
    SCIENCE BULLETIN, 2020, 65 (14) : 1137 - 1138
  • [30] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    C. Gibbs
    J.W. Bender
    Tribology Letters, 2006, 22 : 85 - 93