Factorial series connected with the Lambert function, and a problem posed by Ramanujan

被引:9
|
作者
Volkmer, Hans [1 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
来源
RAMANUJAN JOURNAL | 2008年 / 16卷 / 03期
关键词
Lambert function; Ramanujan's conjecture; factorial series; gamma function;
D O I
10.1007/s11139-007-9104-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ramanujan's sequence {y(n)}(n=0)(infinity) defined by Sigma(n-1)(j=0) n(j)/j ! + n(n)/n ! y(n) = e(n)/2 is expanded in factorial series derived from a series representing the Lambert W function. As a corollary, it is shown that the sequence {y(n)} is completely monotonic.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [41] Lambert W-function Solution for Uniform Flow Depth Problem
    Ahmed A. Lamri
    Said M. Easa
    Water Resources Management, 2022, 36 : 2653 - 2663
  • [42] PROBLEM CONNECTED WITH ZEROS OF RIEMANNS ZETA FUNCTION
    BRAUN, PB
    ZULAUF, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (01) : 18 - 20
  • [43] Ramanujan's Eisenstein series and powers of Dedekind's eta-function
    Chan, Heng Huat
    Cooper, Shaun
    Toh, Pee Choon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 225 - 242
  • [44] Lambert W-function Solution for Uniform Flow Depth Problem
    Lamri, Ahmed A.
    Easa, Said M.
    WATER RESOURCES MANAGEMENT, 2022, 36 (08) : 2653 - 2663
  • [45] An asymptotic expansion for a Lambert series associated to the symmetric square L-function
    Juyal, Abhishek
    Maji, Bibekananda
    Sathyanarayana, Sumukha
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (03) : 553 - 567
  • [47] An asymptotic expansion for a lambert series associated to the symmetric square L-function
    Juyal, Abhishek
    Maji, Bibekananda
    Sathyanarayana, Sumukha
    arXiv, 2021,
  • [48] An exact formula for a Lambert series associated to a cusp form and the Möbius function
    Abhishek Juyal
    Bibekananda Maji
    Sumukha Sathyanarayana
    The Ramanujan Journal, 2022, 57 : 769 - 784
  • [49] ON THE ZEROS OF A SPECIAL TYPE OF FUNCTION CONNECTED WITH DIRICHLET SERIES
    KARATSUBA, AA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (03): : 471 - 502
  • [50] The convergency region of a series connected with the Riemann zeta function
    Landau, E
    MATHEMATISCHE ANNALEN, 1927, 97 : 251 - 290