Nanocrystal assembly for bottom-up plasmonic materials and surface-enhanced Raman spectroscopy (SERS) sensing

被引:9
|
作者
Tao, Andrea R. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
colloidal synthesis; nanocrystals; nanowires; plasmonics; surface-enhanced Raman spectroscopy; chemical sensing; SINGLE-MOLECULE; SCATTERING; NANOPARTICLES; MONOLAYERS; GOLD; JUNCTIONS; GROWTH; ARRAYS;
D O I
10.1351/PAC-CON-08-08-38
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Sub-wavelength metallic features support surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. Ag nanocrystals (NCs) and nanowires (NWs) are ideal building blocks for the bottom-up fabrication of plasmonic materials for photonics, spectroscopy, and chemical sensing. Faceted Ag nanostructures are synthesized using a colloidal approach to regulate nucleation and crystallographic growth direction. Next, new methods of nanoscale organization using Langmuir-Blodgett (LB) compression are presented where one- and two-dimensional assemblies can be constructed with impressive alignment over large areas. Using this method, plasmon coupling between Ag nanostructures can be controlled by varying spacing and density, achieving for the first time a completely tunable plasmon response in the visible wavelengths. Lastly, these assemblies are demonstrated as exceptional substrates for surface-enhanced Raman spectroscopy (SERS) by achieving high chemical sensitivity and specificity, exhibiting their utility as portable field sensors, and integrating them into multiplexed "lab-on-a-chip" devices.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [21] TopUp Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy
    Patze, Sophie
    Huebner, Uwe
    Weber, Karina
    Cialla-May, Dana
    Popp, Juergen
    ADVANCED MATERIALS INTERFACES, 2016, 3 (19):
  • [22] Glucose sensing with surface-enhanced Raman spectroscopy
    Yonzon, Chanda Ranjit
    Lyandres, Olga
    Shah, Nilam C.
    Dieringer, Jon A.
    Van Duyne, Richard P.
    SURFACE-ENHANCED RAMAN SCATTERING: PHYSICS AND APPLICATIONS, 2006, 103 : 367 - 379
  • [23] Application of two-dimensional layered materials in surface-enhanced Raman spectroscopy (SERS)
    Luo, Wen
    Xiong, Weiwei
    Han, Yuenan
    Yan, Xin
    Mai, Liqiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (43) : 26398 - 26412
  • [24] Design of Plasmonic Platforms for Selective Molecular Sensing Based on Surface-Enhanced Raman Spectroscopy
    Marimuthu, A.
    Christopher, Phillip
    Linic, Suljo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17): : 9824 - 9829
  • [25] Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing
    Camden, Jon P.
    Dieringer, Jon A.
    Zhao, Jing
    Van Duyne, Richard P.
    ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) : 1653 - 1661
  • [26] Bacterial Detection <it>via</it> Surface-Enhanced Raman Spectroscopy (SERS)
    Sengupta, Raghuvir
    D'Apuzzo, Fausto
    Barcelo, Steven
    FASEB JOURNAL, 2020, 34
  • [27] Quantitative Analysis Using Surface-Enhanced Raman Spectroscopy (SERS)
    Delonas, Cindy
    Goodacre, Roy
    SPECTROSCOPY, 2021, 36 : 30 - 33
  • [28] Study of Proteins Based on Surface-Enhanced Raman Spectroscopy (SERS)
    Chen Lei
    Kong Wei-he
    Han Xiao-xia
    Zhao Bing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (10) : 3087 - 3091
  • [29] Surface-Enhanced Raman Spectroscopy (SERS) Analysis of Several Cannabinoids
    Dowgiallo, Anne-Marie
    SPECTROSCOPY, 2020, 35 : 50 - 50
  • [30] Micro and nanocapsules as supports for Surface-Enhanced Raman Spectroscopy (SERS)
    Renata, Jastrzab
    PHYSICAL SCIENCES REVIEWS, 2016, 1 (01)