Synchronization by noise for the stochastic quantization equation in dimensions 2 and 3

被引:2
|
作者
Gess, Benjamin [1 ,2 ]
Tsatsoulis, Pavlos [1 ]
机构
[1] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[2] Univ Bielefeld, Fac Math, D-33615 Bielefeld, Germany
关键词
Synchronization by noise; stochastic Allen-Cahn equation; stochastic quantization equation; coming down from infinity; DYNAMICAL-SYSTEMS; RANDOM ATTRACTORS;
D O I
10.1142/S0219493720400067
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove uniform synchronization by noise with rates for the stochastic quantization equation in dimensions two and three. The proof relies on a combination of coming down from infinity estimates and the framework of order-preserving Markov semigroups derived in [O. Butkovsky and M. Scheutzow, Couplings via comparison principle and exponential ergodicity of SPDEs in the hypoelliptic setting, preprint (2019), arXiv:1907.03725]. In particular, it is shown that this framework can be applied to the case of state spaces given in terms of Holder spaces of negative exponent.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise
    Bressloff, Paul C.
    Lai, Yi Ming
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2011, 1
  • [32] Noise-Enhanced Synchronization of Stochastic Magnetic Oscillators
    Locatelli, N.
    Mizrahi, A.
    Accioly, A.
    Matsumoto, R.
    Fukushima, A.
    Kubota, H.
    Yuasa, S.
    Cros, V.
    Pereira, L. G.
    Querlioz, D.
    Kim, J. -V.
    Grollier, J.
    PHYSICAL REVIEW APPLIED, 2014, 2 (03):
  • [33] Riccati equation of stochastic control and stochastic uniform observability in infinite dimensions
    Ungureanu, VM
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 421 - 432
  • [34] STABILIZATION OF PHI-3-MODEL BASED ON STOCHASTIC QUANTIZATION METHOD WITH KERNELED LANGEVIN EQUATION
    TANAKA, S
    OHBA, I
    NAMIKI, M
    MIZUTANI, M
    KOMOIKE, N
    KANENAGA, M
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (01): : 187 - 196
  • [35] Decay of correlations in stochastic quantization: the exponential Euclidean field in two dimensions
    Gubinelli, Massimiliano
    Hofmanova, Martina
    Rana, Nimit
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, 13 (01): : 107 - 145
  • [37] TREATMENT OF CONSTRAINTS IN THE STOCHASTIC QUANTIZATION METHOD AND COVARIANTIZED LANGEVIN EQUATION
    IKEGAMI, K
    KIMURA, T
    MOCHIZUKI, R
    NUCLEAR PHYSICS B, 1993, 395 (1-2) : 371 - 387
  • [39] STOCHASTIC QUANTIZATION OF BOTTOMLESS SYSTEMS BASED ON A KERNELED LANGEVIN EQUATION
    TANAKA, S
    NAMIKI, M
    OHBA, I
    MIZUTANI, M
    KOMOIKE, N
    KANENAGA, M
    PHYSICS LETTERS B, 1992, 288 (1-2) : 129 - 139
  • [40] Stochastic Quantization of Brownian Particle Motion Obeying Kramers Equation
    Choi, Jeong Ryeol
    Choi, Yeontaek
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (06)