Functionally Unidimensional Item Response Models for Multivariate Binary Data

被引:10
|
作者
Ip, Edward H. [1 ,3 ]
Molenberghs, Geert [2 ]
Chen, Shyh-Huei [3 ]
Goegebeur, Yuri [4 ]
De Boeck, Paul [5 ,6 ]
机构
[1] Wake Forest Sch Med, Dept Biostat Sci, Dept Social Sci & Hlth Policy, Winston Salem, NC 27157 USA
[2] Katholieke Univ Leuven, Louvain, Belgium
[3] Wake Forest Sch Med, Dept Biostat Sci, Winston Salem, NC 27157 USA
[4] Univ Southern Denmark, Dept Math & Comp Sci, Odense, Denmark
[5] Katholieke Univ Leuven, Dept Psychol, Louvain, Belgium
[6] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
关键词
MULTIDIMENSIONAL IRT; PARAMETER-ESTIMATION; ROBUSTNESS; PACKAGE;
D O I
10.1080/00273171.2013.796281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensional data is believed to result in ability estimates that represent a combination of the major and minor dimensions. We conjecture that the underlying dimension for the fitted unidimensional model, which we call the functional dimension, represents a nonlinear projection. In this article we investigate 2 issues: (a) can a proposed nonlinear projection track the functional dimension well, and (b) what are the biases in the ability estimate and the associated standard error when estimating the functional dimension? To investigate the second issue, the nonlinear projection is used as an evaluative tool. An example regarding a construct of desire for physical competency is used to illustrate the functional unidimensional approach.
引用
收藏
页码:534 / 562
页数:29
相关论文
共 50 条
  • [41] Item Response Models for Multiple Attempts With Incomplete Data
    Bergner, Yoav
    Choi, Ikkyu
    Castellano, Katherine E.
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2019, 56 (02) : 415 - 436
  • [42] High dimensional multivariate mixed models for binary questionnaire data
    Fieuws, Steffen
    Verbeke, Geert
    Boen, Filip
    Delecluse, Christophe
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 449 - 460
  • [43] Marginalized random effects models for multivariate longitudinal binary data
    Lee, Keunbaik
    Joo, Yongsung
    Yoo, Jae Keun
    Lee, JungBok
    STATISTICS IN MEDICINE, 2009, 28 (08) : 1284 - 1300
  • [44] Markov chain models for multivariate repeated binary data analysis
    Tian, W
    Anderson, SJ
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2000, 29 (04) : 1001 - 1019
  • [45] A multidimensional ideal point item response theory model for binary data
    Maydeu-Olivares, Albert
    Hernandez, Adolfo
    McDonald, Roderick P.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2006, 41 (04) : 445 - 471
  • [46] Item Diagnostics in Multivariate Discrete Data
    Maydeu-Olivares, Alberto
    Liu, Yang
    PSYCHOLOGICAL METHODS, 2015, 20 (02) : 276 - 292
  • [47] An item response theory model for incorporating response time data in binary personality items
    Ferrando, Pere J.
    Lorenzo-Seva, Urbano
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2007, 31 (06) : 525 - 543
  • [48] Comparison of three approaches to missing response data for binary items in item response theory
    Zeng Li
    Xin Tao
    Zhang Shumei
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 620 - 620
  • [49] A general item response theory model for unfolding unidimensional polytomous responses
    Roberts, JS
    Donoghue, JR
    Laughlin, JE
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2000, 24 (01) : 3 - 32
  • [50] Application of multidimensional item response theory models to longitudinal data
    Marvelde, JMT
    Glas, CAW
    Van Landeghem, G
    Van Damme, J
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2006, 66 (01) : 5 - 34