A second variation formula for Perelman's -functional along the modified Kahler-Ricci flow

被引:0
|
作者
Pali, Nefton [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1007/s00209-013-1192-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a quite simple second variation formula for Perelman's -functional along the modified Kahler-Ricci flow over Fano manifolds.
引用
收藏
页码:173 / 189
页数:17
相关论文
共 50 条
  • [41] On stability and the convergence of the Kahler-Ricci flow
    Phong, DH
    Sturm, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2006, 72 (01) : 149 - 168
  • [42] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [43] The Kahler-Ricci flow on Fano bundles
    Fu, Xin
    Zhang, Shijin
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1605 - 1626
  • [44] The Kahler-Ricci flow through singularities
    Song, Jian
    Tian, Gang
    INVENTIONES MATHEMATICAE, 2017, 207 (02) : 519 - 595
  • [45] On the Kahler-Ricci flow on complex surfaces
    Phong, D. H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 405 - 413
  • [46] Limits of solutions to the Kahler-Ricci flow
    Cao, HD
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 257 - 272
  • [47] The Kahler-Ricci Flow on Projective Bundles
    Song, Jian
    Szekelyhidi, Gabor
    Weinkove, Ben
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) : 243 - 257
  • [48] Positivity of Ricci curvature under the Kahler-Ricci flow
    Knopf, D
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (01) : 123 - 133
  • [49] THE KAHLER-RICCI FLOW AND OPTIMAL DEGENERATIONS
    Dervan, Ruadhai
    Szekelyhidi, Gabor
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) : 187 - 203
  • [50] Regularizing Properties of the Kahler-Ricci Flow
    Boucksom, Sebastien
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 189 - 237