Enabling geovisual analytics of health data using a server-side approach

被引:3
|
作者
Turdukulov, Ulanbek [1 ]
Moncrieff, Simon [1 ]
机构
[1] Curtin Univ, Dept Spatial Sci, Perth, WA 6845, Australia
关键词
Geovisual analytics; server side; health research; geo web services; user-driven analysis;
D O I
10.1080/15230406.2015.1065762
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Geovisual analytics can enable a user to explore multivariate spatio-temporal health datasets and to understand spatial distribution of diseases especially in relation to external factors that may influence outbreaks. External data are presently distributed using geo web services. Web services are used in health mainly to present results leading to a supplier-driven service model limiting the exploration of health data. In this paper, we illustrate server-side approach of designing a geovisual analytics environment that allows user-driven geovisual analytics. The server-side combines a data query, processing technique, and styling methodology to rapidly visually summarize properties of a dataset. We illustrate this functionality on a typical workflow used by a health researcher and demonstrate analytical functionality in cases where a consistent classification and styling scheme is needed across dynamically aggregated multivariate spatio-temporal datasets. Since the framework builds on the existing Open Geospatial Consortium web mapping standards, it integrates the existing geo web services as well as stand-alone health data repositories into an infrastructure that allows combination and interactive exploration of these heterogeneous datasets in a visual environment.
引用
收藏
页码:16 / 29
页数:14
相关论文
共 50 条
  • [41] Server-Side Versus Client-Side Synchronization for Watch Together Applications Using CMAF Low Latency
    Gendron, Patrick
    SMPTE Motion Imaging Journal, 2022, 131 (06): : 26 - 33
  • [42] An Adaptive and Collaborative Server-Side SMS Spam Filtering Scheme Using Artificial Immune System
    Onashoga, Adebukola S.
    Abayomi-Alli, Olusola O.
    Sodiya, Adesina S.
    Ojo, David A.
    INFORMATION SECURITY JOURNAL, 2015, 24 (4-6): : 133 - 145
  • [43] A Visual Analytics Approach to Detecting Server Redirections and Data Exfiltration
    Wang, Weijie
    Yang, Baijian
    Chen, Victor Yingjie
    2015 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2015, : 13 - 18
  • [44] Application of geovisual analytics to modelling the movements of ruminants in the rural landscape using satellite tracking data
    Benke, K. K.
    Sheth, F.
    Betteridge, K.
    Pettit, C. J.
    Aurambout, J. -P.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (07) : 579 - 593
  • [45] MDWA: a model-driven Web augmentation approach—coping with client- and server-side support
    Matias Urbieta
    Sergio Firmenich
    Gabriela Bosetti
    Pedro Maglione
    Gustavo Rossi
    Miguel Angel Olivero
    Software and Systems Modeling, 2020, 19 : 1541 - 1566
  • [46] Analysis of server-side and client-side Web-GIS data processing methods on the example of JTS and JS']JSTS using open data from OSM and geoportal
    Kulawiak, Marcin
    Dawidowicz, Agnieszka
    Pacholczyk, Marek Emanuel
    COMPUTERS & GEOSCIENCES, 2019, 129 : 26 - 37
  • [47] Using NetCloak to develop server-side Web-based experiments without writing CGI programs
    Christopher R. Wolfe
    Valerie F. Reyna
    Behavior Research Methods, Instruments, & Computers, 2002, 34 : 204 - 207
  • [48] Using NetCloak to develop server-side Web-based experiments without writing CGI programs
    Wolfe, CR
    Reyna, VF
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2002, 34 (02): : 204 - 207
  • [49] MDWA: a model-driven Web augmentation approach-coping with client- and server-side support
    Urbieta, Matias
    Firmenich, Sergio
    Bosetti, Gabriela
    Maglione, Pedro
    Rossi, Gustavo
    Olivero, Miguel Angel
    SOFTWARE AND SYSTEMS MODELING, 2020, 19 (06): : 1541 - 1566
  • [50] Provenance Network Analytics An approach to data analytics using data provenance
    Trung Dong Huynh
    Ebden, Mark
    Fischer, Joel
    Roberts, Stephen
    Moreau, Luc
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (03) : 708 - 735