ON MINIMAL FINITE QUOTIENTS OF MAPPING CLASS GROUPS

被引:6
|
作者
Zimmermann, Bruno P. [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Informat, I-34100 Trieste, Italy
关键词
D O I
10.1216/RMJ-2012-42-4-1411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the minimal nontrivial finite quotient group of the mapping class group M-g of a closed orientable surface of genus g is the symplectic group PSp2g(Z(2)), for g = 3 and 4 (this might remain true, however, for arbitrary genus g > 2). We also discuss some results for arbitrary genus g.
引用
收藏
页码:1411 / 1420
页数:10
相关论文
共 50 条
  • [11] Abelian quotients of mapping class groups of highly connected manifolds
    Galatius, Soren
    Randal-Williams, Oscar
    MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 857 - 879
  • [12] Quotients of locally minimal groups
    Peng, Dekui
    Dikranjan, Dikran
    He, Wei
    Xiao, Zhiqiang
    Xi, Wenfei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1215 - 1241
  • [13] A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups
    Behrstock, Jason
    Hagen, Mark
    Martin, Alexandre
    Sisto, Alessandro
    JOURNAL OF TOPOLOGY, 2024, 17 (03)
  • [14] Torus quotients as global quotients by finite groups
    Geraschenko, Anton
    Satriano, Matthew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 736 - 759
  • [15] Finite quotients of braid groups
    Chudnovsky, Alice
    Kordek, Kevin
    Li, Qiao
    Partin, Caleb
    GEOMETRIAE DEDICATA, 2020, 207 (01) : 409 - 416
  • [16] Solitary quotients of finite groups
    Tarnauceanu, Marius
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (02): : 740 - 747
  • [17] Finite index subgroups of mapping class groups
    Berrick, A. J.
    Gebhardt, V.
    Paris, L.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 575 - 599
  • [18] Finite quotients of braid groups
    Alice Chudnovsky
    Kevin Kordek
    Qiao Li
    Caleb Partin
    Geometriae Dedicata, 2020, 207 : 409 - 416
  • [19] The minimal degree for a class of finite complex reflection groups
    Saunders, Neil
    JOURNAL OF ALGEBRA, 2010, 323 (03) : 561 - 573
  • [20] Finite quotients of ultraproducts of finite perfect groups
    Yang, Yilong
    JOURNAL OF ALGEBRA, 2023, 632 : 194 - 225