Quantum graphs with spin Hamiltonians

被引:0
|
作者
Harrison, J. M. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
quantum graphs; Dirac operator; Rashba Hamiltonian;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article surveys quantization schemes for metric graphs with spin. Typically quantum graphs are defined with the Laplace or Schrodinger Operator which describe particles whose intrinsic angular momentum (spin) is zero. However, in many applications, for example modeling an electron (which has spin-1/2) on a network of thin wires, it is necessary to consider operators which allow spin-orbit interaction. The article presents a review of quantization schemes for graphs with three such Hamiltonian operators, the Dirac, Pauli and Rashba Hamiltonians. Comparing results for the trace formula, spectral statistics and spin-orbit localization on quantum graphs with spin Hamiltonians.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 50 条
  • [41] Droplet states in quantum XXZ spin systems on general graphs
    Fischbacher, C.
    Stolz, G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [42] Quantum walks on graphs of the ordered Hamming scheme and spin networks
    Miki, Hiroshi
    Tsujimoto, Satoshi
    Vinet, Luc
    SCIPOST PHYSICS, 2019, 7 (01):
  • [43] Spin squeezing Hamiltonians and optimal spin squeezing parameters
    Akhound, Ahmad
    Jafarpour, Mojtaba
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2007, 122 (08): : 885 - 896
  • [44] Measuring quantum optical Hamiltonians
    D'Ariano, GM
    Maccone, L
    PHYSICAL REVIEW LETTERS, 1998, 80 (25) : 5465 - 5468
  • [45] Quantum Hamiltonians and Stochastic Jumps
    Detlef Dürr
    Sheldon Goldstein
    Roderich Tumulka
    Nino Zangh
    Communications in Mathematical Physics, 2005, 254 : 129 - 166
  • [46] QUANTUM CHAOS WITH NONERGODIC HAMILTONIANS
    CAURIER, E
    GRAMMATICOS, B
    EUROPHYSICS LETTERS, 1986, 2 (06): : 417 - 421
  • [47] The diagonalization of quantum field Hamiltonians
    Lee, D
    Salwen, N
    Lee, D
    PHYSICS LETTERS B, 2001, 503 (1-2) : 223 - 235
  • [48] Quantum Hamiltonians and stochastic jumps
    Dürr, D
    Goldstein, S
    Tumulka, R
    Zangh, N
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (01) : 129 - 166
  • [49] ALGEBRAIC QUANTUM HAMILTONIANS ON THE PLANE
    Sokolov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (01) : 940 - 952
  • [50] Algebraic quantum Hamiltonians on the plane
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2015, 184 : 940 - 952