Halin's theorem for cubic graphs on an annulus

被引:3
|
作者
Archdeacon, D [1 ]
Bonnington, CP
Sirán, J
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] Univ Auckland, Dept Math, Auckland, New Zealand
[3] Slovak Univ Technol Bratislava, Dept Math, Bratislava 281368, Slovakia
关键词
infinite graphs; accumulation points; excluded subgraphs; annulus;
D O I
10.1016/j.disc.2003.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Halin's Theorem characterizes those locally-finite, infinite graphs that embed in the plane without accumulation points by giving a set of six topologically excluded subgraphs. We prove the analogous theorem for cubic graphs that embed in an annulus without accumulation points, finding the complete set of 29 excluded subgraphs. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [41] On the complete chromatic number of Halin graphs
    Zhang Z.
    Liu L.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (1) : 102 - 106
  • [42] OPTIMAL PARALLEL COMPUTATIONS FOR HALIN GRAPHS
    DIKS, K
    RYTTER, W
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 401 : 266 - 273
  • [43] Constrained cycle covers in Halin graphs
    Li, Yueping
    COMBINATORICS, ALGORITHMS, PROBABILISTIC AND EXPERIMENTAL METHODOLOGIES, 2007, 4614 : 186 - 197
  • [44] Group Chromatic Number of Halin Graphs
    Xiangwen Li
    Graphs and Combinatorics, 2015, 31 : 1531 - 1538
  • [45] On the oriented chromatic number of Halin graphs
    Dolama, Mohammad Hosseini
    Sopena, Eric
    INFORMATION PROCESSING LETTERS, 2006, 98 (06) : 247 - 252
  • [46] OPTIMAL PARALLEL COMPUTATIONS FOR HALIN GRAPHS
    DIKS, K
    RYTTER, W
    OPTIMAL ALGORITHMS, 1989, 401 : 266 - 273
  • [47] Flow number of signed Halin graphs
    Wang, Xiao
    Lu, You
    Zhang, Shenggui
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 393
  • [48] Acyclic chromatic index of fully subdivided graphs and Halin graphs
    Basavaraju, M. (manub@imsc.res.in), 1600, Discrete Mathematics and Theoretical Computer Science (14):
  • [49] Clifford's Theorem for graphs
    Coppens, Marc
    ADVANCES IN GEOMETRY, 2016, 16 (03) : 389 - 400
  • [50] Schaefer's Theorem for Graphs
    Bodirsky, Manuel
    Pinsker, Michael
    JOURNAL OF THE ACM, 2015, 62 (03)