Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap

被引:18
|
作者
Fang, Bess [1 ,2 ]
Vignolo, Patrizia [3 ]
Miniatura, Christian [1 ,2 ,3 ,4 ]
Minguzzi, Anna [5 ]
机构
[1] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Nice Sophia Antipolis, Inst Non Lineaire Nice, CNRS, F-06560 Valbonne, France
[4] CNRS, IPAL, Singapore 138632, Singapore
[5] Univ Grenoble 1, Lab Phys & Modelisat Milieux Condenses, CNRS, F-38042 Grenoble, France
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
基金
新加坡国家研究基金会;
关键词
boson systems; fermion systems; matrix algebra; GAS; ATOMS;
D O I
10.1103/PhysRevA.79.023623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a strongly interacting one-dimensional (1D) Bose-Fermi mixture confined in a harmonic trap. It consists of a Tonks-Girardeau (TG) gas (1D Bose gas with repulsive hard-core interactions) and of a noninteracting Fermi gas (1D spin-aligned Fermi gas), both species interacting through hard-core repulsive interactions. Using a generalized Bose-Fermi mapping, we determine the one-body density matrices, exact particle density profiles, momentum distributions, and behavior of the mixture under 1D expansion when opening the trap. In real space, bosons and fermions do not display any phase separation: the respective density profiles extend over the same region and they both present a number of peaks equal to the total number of particles in the trap. In momentum space the bosonic component has the typical narrow TG profile, while the fermionic component shows a broad distribution with fermionic oscillations at small momenta. Due to the large boson-fermion repulsive interactions, both the bosonic and the fermionic momentum distributions decay as Cp-4 at large momenta, like in the case of a pure bosonic TG gas. The coefficient C is related to the two-body density matrix and to the bosonic concentration in the mixture. When opening the trap, both momentum distributions "fermionize" under expansion and turn into that of a Fermi gas with a particle number equal to the total number of particles in the mixture.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Pairing of one-dimensional Bose-Fermi mixtures with unequal masses
    Rizzi, Matteo
    Imambekov, Adilet
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [42] Quantum phase transition and elementary excitations of a Bose-Fermi mixture in a one-dimensional optical lattice
    Gu, Shi-Jian
    Cao, Junpeng
    Chen, Shu
    Lin, Hai-Qing
    PHYSICAL REVIEW B, 2009, 80 (22)
  • [43] Multicomponent strongly attractive Fermi gas: A color superconductor in a one-dimensional harmonic trap
    Liu, Xia-Ji
    Hu, Hui
    Drummond, Peter D.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [44] Visibility pattern of Bose-Fermi mixtures in one-dimensional incommensurate lattices
    Masaki, Akiko
    Mori, Hiroyuki
    PHILOSOPHICAL MAGAZINE LETTERS, 2013, 93 (07) : 422 - 430
  • [45] Thermodynamic stability, compressibility matrices, and effects of mediated interactions in a strongly interacting Bose-Fermi mixture
    Manabe, Koki
    Ohashi, Yoji
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [46] Single-particle properties of a strongly interacting Bose-Fermi mixture with mass and population imbalance
    Manabe, Koki
    Inotani, Daisuke
    Ohashi, Yoji
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [47] Competition of superfluidity and density waves in one-dimensional Bose-Fermi mixtures
    Orignac, E.
    Tsuchiizu, M.
    Suzumura, Y.
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [48] Quantum degenerate Bose-Fermi mixtures on one-dimensional optical lattices
    Sengupta, Pinaki
    Pryadko, Leonid P.
    PHYSICAL REVIEW B, 2007, 75 (13):
  • [49] Phase diagrams of one-dimensional Bose-Fermi mixtures of ultracold atoms
    Mathey, L.
    Wang, D. -W.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [50] Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices
    Bludov, Yu. V.
    Santhanam, J.
    Kenkre, V. M.
    Konotop, V. V.
    PHYSICAL REVIEW A, 2006, 74 (04):