Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap

被引:18
|
作者
Fang, Bess [1 ,2 ]
Vignolo, Patrizia [3 ]
Miniatura, Christian [1 ,2 ,3 ,4 ]
Minguzzi, Anna [5 ]
机构
[1] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Nice Sophia Antipolis, Inst Non Lineaire Nice, CNRS, F-06560 Valbonne, France
[4] CNRS, IPAL, Singapore 138632, Singapore
[5] Univ Grenoble 1, Lab Phys & Modelisat Milieux Condenses, CNRS, F-38042 Grenoble, France
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 02期
基金
新加坡国家研究基金会;
关键词
boson systems; fermion systems; matrix algebra; GAS; ATOMS;
D O I
10.1103/PhysRevA.79.023623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a strongly interacting one-dimensional (1D) Bose-Fermi mixture confined in a harmonic trap. It consists of a Tonks-Girardeau (TG) gas (1D Bose gas with repulsive hard-core interactions) and of a noninteracting Fermi gas (1D spin-aligned Fermi gas), both species interacting through hard-core repulsive interactions. Using a generalized Bose-Fermi mapping, we determine the one-body density matrices, exact particle density profiles, momentum distributions, and behavior of the mixture under 1D expansion when opening the trap. In real space, bosons and fermions do not display any phase separation: the respective density profiles extend over the same region and they both present a number of peaks equal to the total number of particles in the trap. In momentum space the bosonic component has the typical narrow TG profile, while the fermionic component shows a broad distribution with fermionic oscillations at small momenta. Due to the large boson-fermion repulsive interactions, both the bosonic and the fermionic momentum distributions decay as Cp-4 at large momenta, like in the case of a pure bosonic TG gas. The coefficient C is related to the two-body density matrix and to the bosonic concentration in the mixture. When opening the trap, both momentum distributions "fermionize" under expansion and turn into that of a Fermi gas with a particle number equal to the total number of particles in the mixture.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dynamical fermionization in a one-dimensional Bose-Fermi mixture
    Patu, Ovidiu, I
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [2] Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap
    Hao Ya-Jiang
    CHINESE PHYSICS LETTERS, 2011, 28 (01)
  • [3] Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap
    Dehkharghani, A. S.
    Bellotti, F. F.
    Zinner, N. T.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (14)
  • [4] Quantum criticality of a one-dimensional Bose-Fermi mixture
    Yin, Xiangguo
    Guan, Xi-Wen
    Zhang, Yunbo
    Chen, Shu
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [5] Quasiparticle decay in a one-dimensional Bose-Fermi mixture
    Reichert, Benjamin
    Petkovic, Aleksandra
    Ristivojevic, Zoran
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [6] Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture
    Fang, Bess
    Vignolo, Patrizia
    Gattobigio, Mario
    Miniatura, Christian
    Minguzzi, Anna
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [7] Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures
    Deuretzbacher, F.
    Becker, D.
    Bjerlin, J.
    Reimann, S. M.
    Santos, L.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [8] Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas
    Batchelor, M. T.
    Guan, X. W.
    LASER PHYSICS LETTERS, 2007, 4 (01) : 77 - 83
  • [9] Ground-state properties of a one-dimensional strongly interacting Bose-Fermi mixture in a double-well potential
    Lelas, K.
    Jukic, D.
    Buljan, H.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [10] Exactly solvable case of a one-dimensional Bose-Fermi mixture
    Imambekov, A
    Demler, E
    PHYSICAL REVIEW A, 2006, 73 (02):