Unsupervised pixel-level video foreground object segmentation via shortest path algorithm

被引:16
|
作者
Cao, Xiaochun [1 ]
Wang, Feng [2 ]
Zhang, Bao [3 ]
Fu, Huazhu [4 ]
Li, Chao [5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[2] Tianjin Univ, Sch Comp Software, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[5] Beihang Univ Shenzhen, Res Inst, Shenzhen Key Lab Data Vitalizat, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Video object segmentation; Shortest path solution;
D O I
10.1016/j.neucom.2014.12.105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised video object segmentation is to automatically segment the foreground object in the video without any prior knowledge. In this paper, we propose an object-level method to extract the foreground object in the video. We firstly generate all the object-like regions as the segmentation candidates. Then based on the corresponding map between the successive frames, the video segmentation problem is converted to corresponding graph model, which selects the most corresponding object region from each frame. The shortest path algorithm is explored to get a global optimum solution for this graph. To obtain a better result, we also introduce a global foreground model to restrict the selected candidates. Finally, we utilize the selected candidates to obtain a more precise pixel-level foreground object segmentation. Compared with the state-of-the-art object-level methods, our method does not only guarantee the continuity of segmentation result, but also works well even under the cases of fast motion and occlusion. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [41] Learning Pixel-Level Distinctions for Video Highlight Detection
    Wei, Fanyue
    Wang, Biao
    Ge, Tiezheng
    Jiang, Yuning
    Li, Wen
    Duan, Lixin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3063 - 3072
  • [42] Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion
    Liu, Yu
    Mu, Fuhao
    Shi, Yu
    Cheng, Juan
    Li, Chang
    Chen, Xun
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [43] Combining Pixel-Level and Structure-Level Adaptation for Semantic Segmentation
    Bi, Xiwen
    Chen, Dubing
    Huang, He
    Wang, Shidong
    Zhang, Haofeng
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9669 - 9684
  • [44] Texture as pixel feature for video object segmentation
    Ahmed, R.
    Karmakar, G. C.
    Dooley, L. S.
    ELECTRONICS LETTERS, 2008, 44 (19) : 1126 - U12
  • [45] Combining Pixel-Level and Structure-Level Adaptation for Semantic Segmentation
    Xiwen Bi
    Dubing Chen
    He Huang
    Shidong Wang
    Haofeng Zhang
    Neural Processing Letters, 2023, 55 : 9669 - 9684
  • [46] DMFNet: geometric multi-scale pixel-level contrastive learning for video salient object detection
    Singh, Hemraj
    Verma, Mridula
    Cheruku, Ramalingaswamy
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2025, 14 (02)
  • [47] Efficient Object Pixel-Level Categorization Using Bag of Features
    Aldavert, David
    Ramisa, Arnau
    Toledo, Ricardo
    Lopez de Mantaras, Ramon
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 44 - +
  • [48] Reciprocal Transformations for Unsupervised Video Object Segmentation
    Ren, Sucheng
    Liu, Wenxi
    Liu, Yongtuo
    Chen, Haoxin
    Han, Guoqiang
    He, Shengfeng
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15450 - 15459
  • [49] Anchor Diffusion for Unsupervised Video Object Segmentation
    Yang, Zhao
    Wang, Qiang
    Bertinetto, Luca
    Hu, Weiming
    Bai, Song
    Torr, Philip H. S.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 931 - 940
  • [50] A Pixel-Level Segmentation Method for Water Surface Reflection Detection
    Wu, Qiwen
    Zheng, Xiang
    Wang, Jianhua
    Wang, Haozhu
    Che, Wenbo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 493 - 505