Unsupervised pixel-level video foreground object segmentation via shortest path algorithm

被引:16
|
作者
Cao, Xiaochun [1 ]
Wang, Feng [2 ]
Zhang, Bao [3 ]
Fu, Huazhu [4 ]
Li, Chao [5 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[2] Tianjin Univ, Sch Comp Software, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[5] Beihang Univ Shenzhen, Res Inst, Shenzhen Key Lab Data Vitalizat, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Video object segmentation; Shortest path solution;
D O I
10.1016/j.neucom.2014.12.105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised video object segmentation is to automatically segment the foreground object in the video without any prior knowledge. In this paper, we propose an object-level method to extract the foreground object in the video. We firstly generate all the object-like regions as the segmentation candidates. Then based on the corresponding map between the successive frames, the video segmentation problem is converted to corresponding graph model, which selects the most corresponding object region from each frame. The shortest path algorithm is explored to get a global optimum solution for this graph. To obtain a better result, we also introduce a global foreground model to restrict the selected candidates. Finally, we utilize the selected candidates to obtain a more precise pixel-level foreground object segmentation. Compared with the state-of-the-art object-level methods, our method does not only guarantee the continuity of segmentation result, but also works well even under the cases of fast motion and occlusion. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [1] Pixel-Level Bijective Matching for Video Object Segmentation
    Cho, Suhwan
    Lee, Heansung
    Kim, Minjung
    Jang, Sungjun
    Lee, Sangyoun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1453 - 1462
  • [2] Pixel-Level Matching for Video Object Segmentation using Convolutional Neural Networks
    Yoon, Jae Shin
    Rameau, Francois
    Kim, Junsik
    Lee, Seokju
    Shin, Seunghak
    Kweon, In So
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2186 - 2195
  • [3] Pixel-level clustering network for unsupervised image segmentation
    Hoang, Cuong Manh
    Kang, Byeongkeun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [4] VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation
    Poullot, Sebastien
    Satoh, Shin'Ichi
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 362 - 371
  • [5] Deep Pixel-Level Matching via Attention for Video Co-Segmentation
    Li, Junliang
    Wong, Hon-Cheng
    He, Shengfeng
    Lo, Sio-Long
    Zhang, Guifang
    Wang, Wenxiao
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [6] Unsupervised Learning of Foreground Object Segmentation
    Croitoru, Ioana
    Bogolin, Simion-Vlad
    Leordeanu, Marius
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (09) : 1279 - 1302
  • [7] Unsupervised Learning of Foreground Object Segmentation
    Ioana Croitoru
    Simion-Vlad Bogolin
    Marius Leordeanu
    International Journal of Computer Vision, 2019, 127 : 1279 - 1302
  • [8] Modeling automatic pavement crack object detection and pixel-level segmentation
    Du, Yuchuan
    Zhong, Shan
    Fang, Hongyuan
    Wang, Niannian
    Liu, Chenglong
    Wu, Difei
    Sun, Yan
    Xiang, Mang
    AUTOMATION IN CONSTRUCTION, 2023, 150
  • [9] Video segmentation for traffic monitoring tasks based on pixel-level snakes
    Vilariño, DL
    Cabello, D
    Pardo, XM
    Brea, VM
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 1074 - 1081
  • [10] Dense Pixel-Level Interpretation of Dynamic Scenes With Video Panoptic Segmentation
    Kim, Dahun
    Woo, Sanghyun
    Lee, Joon-Young
    Kweon, In So
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5383 - 5395