The normalized Laplacians, degree-Kirchhoff index and the spanning trees of hexagonal Mobius graphs

被引:21
|
作者
Ma, Xiaoling [1 ]
Bian, Hong [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Peoples R China
关键词
Hexagonal Mobius graph; Normalized Laplacian; Degree-Kirchhoff index; Spanning trees; RESISTANCE-DISTANCE; TOPOLOGY;
D O I
10.1016/j.amc.2019.02.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let HMn be a hexagonal Mobius graph of length n. In this paper, due to the normalized Laplacian polynomial decomposition theorem, we obtain that the normalized Laplacian spectrum of HMn consists of the eigenvalues of two symmetric quasi-tridiagonal matrices L-A and L-S of order 2n. Finally, by applying the relationship between the roots and coefficients of the characteristic polynomials of the above two matrices, explicit closed formulas of the degree-Kirchhoff index and the number of spanning trees of HMn are given in terms of the index n. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [31] The multiplicative degree-Kirchhoff index and complexity of a class of linear networks
    Liu, Jia-Bao
    Wang, Kang
    AIMS MATHEMATICS, 2024, 9 (03): : 7111 - 7130
  • [32] Enumeration of the Additive Degree-Kirchhoff Index in the Random Polygonal Chains
    Geng, Xianya
    Zhu, Wanlin
    AXIOMS, 2022, 11 (08)
  • [33] Enumeration of the Multiplicative Degree-Kirchhoff Index in the Random Polygonal Chains
    Zhu, Wanlin
    Geng, Xianya
    MOLECULES, 2022, 27 (17):
  • [34] New Upper and Lower Bounds for the Additive Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Torrieroa, Anna
    CROATICA CHEMICA ACTA, 2013, 86 (04) : 363 - 370
  • [35] Kirchhoff index and degree Kirchhoff index of complete multipartite graphs
    Bapat, Ravindra B.
    Karimi, Masoud
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 41 - 49
  • [36] Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains
    Liu, Xinmei
    Liang, Xinfeng
    Geng, Xianya
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) : 707 - 719
  • [37] The degree Kirchhoff index of weighted graphs
    Liu, Weijun
    Zhang, Nannan
    ARS COMBINATORIA, 2019, 147 : 255 - 261
  • [38] Degree Kirchhoff Index of Bicyclic Graphs
    Tang, Zikai
    Deng, Hanyuan
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 197 - 205
  • [39] Degree Kirchhoff Index of Unicyclic Graphs
    Feng, Lihua
    Gutman, Ivan
    Yu, Guihai
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 629 - 648
  • [40] NOTE ON DEGREE KIRCHHOFF INDEX OF GRAPHS
    Hakimi-Nezhaad, M.
    Ashrafi, A. R.
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (03) : 43 - 52