Retarded regular graphs are regular or semiregular

被引:1
|
作者
De La Pena, Jose A. [1 ]
Gutman, Ivan [2 ]
Rada, Juan [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04150, DF, Mexico
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
来源
LINEAR & MULTILINEAR ALGEBRA | 2008年 / 56卷 / 05期
关键词
retarded regular graphs; adjacency matrix; semiregular graph;
D O I
10.1080/03081080701365759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is said to be retarded regular if there is a positive integral number s such that the number of walks of length s starting at vertices of G is a constant function. Regular and semiregular graphs are retarded regular with s=1 and s <= 2, respectively. We prove that any retarded regular connected graph is either regular or semiregular.
引用
收藏
页码:507 / 509
页数:3
相关论文
共 50 条
  • [1] Semiregular, weakly regular, and π-regular rings
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2002, 109 (3) : 1509 - 1588
  • [2] SEMIREGULAR FACTORIZATIONS OF REGULAR MULTIGRAPHS
    Ferencak, Michael N.
    Hilton, Anthony J. W.
    MATHEMATIKA, 2010, 56 (02) : 357 - 362
  • [3] Regular packings of regular graphs
    Gutiérrez, A
    Lladó, AS
    DISCRETE MATHEMATICS, 2002, 244 (1-3) : 83 - 94
  • [4] REGULAR GRAPHS IN REGULAR MAPS
    WILSON, SE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654
  • [5] REGULAR FACTORS IN REGULAR GRAPHS
    KATERINIS, P
    DISCRETE MATHEMATICS, 1993, 113 (1-3) : 269 - 274
  • [6] REGULAR FACTORS OF REGULAR GRAPHS
    BOLLOBAS, B
    SAITO, A
    WORMALD, NC
    JOURNAL OF GRAPH THEORY, 1985, 9 (01) : 97 - 103
  • [7] REGULAR SUBGRAPHS OF REGULAR GRAPHS
    TASHKINOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1982, 265 (01): : 43 - 44
  • [8] REGULAR COLORINGS IN REGULAR GRAPHS
    Bernshteyn, Anton
    Khormali, Omid
    Martin, Ryan R.
    Rollin, Jonathan
    Rorabaugh, Danny
    Shan, Songling
    Uzzell, Andrew J.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 795 - 806
  • [9] REGULAR GRAPHS WITH REGULAR NEIGHBORHOODS
    SOLTES, L
    GLASGOW MATHEMATICAL JOURNAL, 1992, 34 : 215 - 218
  • [10] Regular Graphs, Eigenvalues and Regular Factors
    Lu, Hongliang
    JOURNAL OF GRAPH THEORY, 2012, 69 (04) : 349 - 355