Non-invasive phenotyping of hepatic fibrosis using unsupervised machine learning

被引:0
|
作者
Brag, J. [1 ]
Nakano, Y. [1 ]
Cabrera-Lozoya, R. [1 ]
Oubel, E. [1 ]
Wagner, M. [2 ]
Lucidarme, O. [2 ]
机构
[1] Median Technol, R&D, Valbonne, France
[2] Hop La Pitie Salpetriere, Radiol, Paris, France
关键词
D O I
10.1016/S0168-8278(18)31027-4
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
FRI-078
引用
收藏
页码:S396 / S396
页数:1
相关论文
共 50 条
  • [31] NON-INVASIVE EXPLAINABLE MACHINE LEARNING MODELS FOR ASSESSMENT OF SIGNIFICANT FIBROSIS IN PATIENTS WITH AUTOIMMUNE HEPATITIS
    Zhang, Zhiyi
    Wang, Huali
    Zhang, Qun
    Zhu, Li
    Zhang, Shaoqiu
    Pan, Yifan
    Wang, Jian
    Qiu, Yuanwang
    Wu, Chao
    Huang, Rui
    Li, Jie
    HEPATOLOGY, 2023, 78 : S435 - S435
  • [32] Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy
    Huang, Qun
    Huang, Fangyi
    Chen, Chengcai
    Xiao, Pan
    Liu, Jiali
    Gao, Yong
    EUROPEAN RADIOLOGY, 2025,
  • [33] Machine learning outperforms existing non-invasive tests as screening tool for liver fibrosis in the general
    Serra-Burriel, Miquel
    Graupera, Isabel
    Thiele, Maja
    Caballeria, Llorenc
    Roulot, Dominique
    Wong, Grace Lai-Hung
    Fabrellas, Nuria
    Guha, Neil
    Arslanow, Anita
    Exposito, Carmen
    Hernandez, Rosario
    Aithal, Guruprasad
    Galle, Peter
    Wong, Vincent Wai-Sun
    Lammert, Frank
    Laurent, Castera
    Krag, Aleksander
    Gines, Pere
    JOURNAL OF HEPATOLOGY, 2020, 73 : S72 - S72
  • [34] Predicting advanced fibrosis using non-invasive clinical tests and modern machine learning methods in TARGET-NASH
    Mesenbrink, Peter
    Barritt, A. Sidney
    Loomba, Rohit
    Newsome, Philip N.
    Sanyal, Arun
    Zink, Richard
    JOURNAL OF HEPATOLOGY, 2020, 73 : S431 - S432
  • [35] Closing the phenotyping gap with non-invasive belowground field phenotyping
    Blanchy, Guillaume
    Deroo, Waldo
    De Swaef, Tom
    Lootens, Peter
    Quataert, Paul
    Roldan-Ruiz, Isabel
    Versteeg, Roelof
    Garre, Sarah
    SOIL, 2025, 11 (01) : 67 - 84
  • [36] Diagnostic Value of FibroTouch and Non-invasive Fibrosis Indexes in Hepatic Fibrosis with Different Aetiologies
    Xuebin Peng
    Aiping Tian
    Junfeng Li
    Yongwu Mao
    Ni Jiang
    Ting Li
    Xiaorong Mao
    Digestive Diseases and Sciences, 2022, 67 : 2627 - 2636
  • [37] Diagnostic Value of FibroTouch and Non-invasive Fibrosis Indexes in Hepatic Fibrosis with Different Aetiologies
    Peng, Xuebin
    Tian, Aiping
    Li, Junfeng
    Mao, Yongwu
    Jiang, Ni
    Li, Ting
    Mao, Xiaorong
    DIGESTIVE DISEASES AND SCIENCES, 2022, 67 (06) : 2627 - 2636
  • [38] A non-invasive approach for calcium deficiency detection in pears using machine learning
    Yogesh
    Dubey, Ashwani Kumar
    Rocha, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2023, 37 (11): : 7609 - 7618
  • [39] A machine learning approach for mortality prediction only using non-invasive parameters
    Guang Zhang
    JiaMeng Xu
    Ming Yu
    Jing Yuan
    Feng Chen
    Medical & Biological Engineering & Computing, 2020, 58 : 2195 - 2238
  • [40] Non-invasive glucose prediction and classification using NIR technology with machine learning
    Naresh, M.
    Nagaraju, V. Siva
    Kollem, Sreedhar
    Kumar, Jayendra
    Peddakrishna, Samineni
    HELIYON, 2024, 10 (07)