Automated detection of protein unfolding events in atomic force microscopy force curves

被引:7
|
作者
Garcia-Masso, Xavier [1 ]
Huber, Matthias C. [2 ,3 ]
Friedmann, Jacqueline. [4 ]
Gonzalez, Luis M. [5 ]
Schiller, Stefan M. [2 ,3 ]
Toca-Herrera, Jose L. [4 ]
机构
[1] Univ Valencia, Dept Teaching Mus Arts & Body Express, Valencia, Spain
[2] Univ Freiburg, Ctr Biosyst Anal, Habsburger Str 49, D-79104 Freiburg, Germany
[3] Freiburg Inst Adv Studies, Alberstr 19, D-79104 Freiburg, Germany
[4] Univ Nat Resources & Life Sci, Inst Biophys, Dept Nanobiotechnol, Vienna, Austria
[5] Univ Valencia, Dept Phys Educ & Sport, Valencia, Spain
关键词
adhesion; atomic force microscopy; elastin; unfolding; detection program; CONTACT POINT; ROBUST STRATEGIES; ESCHERICHIA-COLI; ARTERIAL ELASTIN; AFM; PURIFICATION; INDENTATION; ALGORITHM; TITIN; SOFT;
D O I
10.1002/jemt.22764
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Atomic force microscopy is not only a high-resolution imaging device but also a mechanical machine, which can be used either to indent or stretch (soft) biomaterials. Due to the statistical nature of such materials (i.e., hydrogels or polymers) hundreds of force-distance curves are required to describe their mechanical properties. In this manuscript, we present an automated system for polymer unfolding detection based on continuous wavelet analysis. We have tested the automated program on elastin, which is an important protein that provides elasticity to tissues and organs. Our results show that elastin changes its mechanical behavior in the presence of electrolytes. In particular, we show that NaCl has a different effect on the contour length than CaCl2 for similar unfolding forces. In addition, we provide the program in the supporting information for the researches facing such kind of problem.
引用
收藏
页码:1105 / 1111
页数:7
相关论文
共 50 条
  • [41] Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality
    Carvalho, Filomena A.
    Martins, Ivo C.
    Santos, Nuno C.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013, 531 (1-2) : 116 - 127
  • [42] Force mode atomic force microscopy as a tool for protein folding studies
    Best, RB
    Brockwell, DJ
    Toca-Herrera, JL
    Blake, AW
    Smith, DA
    Radford, SE
    Clarke, J
    ANALYTICA CHIMICA ACTA, 2003, 479 (01) : 87 - 105
  • [43] Atomic force microscopy of interfacial protein films
    J Colloid Interface Sci, 2 (600):
  • [44] Atomic force microscopy of protein films and crystals
    Pechkova, Eugenia
    Sartore, Marco
    Giacomelli, Luca
    Nicolini, Claudio
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (09):
  • [45] Atomic Force Microscopy of Interfacial Protein Films
    Institute of Food Research, Norwich Research Park, Colney, Norwich
    NR4 7UA, United Kingdom
    J. Colloid Interface Sci., 2 (600-602):
  • [46] Protein interactions visualized by atomic force microscopy
    Borman, S
    CHEMICAL & ENGINEERING NEWS, 2000, 78 (33) : 40 - 40
  • [47] Atomic force microscopy study on the unfolding of globular proteins in the Langmuir films
    Furuno, Taiji
    THIN SOLID FILMS, 2014, 552 : 170 - 179
  • [48] Atomic force microscopy of interfacial protein films
    Gunning, AP
    Wilde, PJ
    Clark, DC
    Morris, VJ
    Parker, ML
    Gunning, PA
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 183 (02) : 600 - 602
  • [49] Capillary force in atomic force microscopy
    Jang, JK
    Schatz, GC
    Ratner, MA
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (03): : 1157 - 1160
  • [50] Direct Equilibrium Protein Folding-Unfolding of Mechanically Labile Alpha Helical Protein by Atomic Force Microscopy
    Xiao, Adam
    Li, Hongbin
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 618A - 618A