Solving Ordinary Differential Equations by Simplex Integrals via Linear Equations

被引:0
|
作者
Zhou, Yongxiong [1 ]
Xiang, Shuhuang [1 ]
机构
[1] Guangdong Ocean Univ, Dept Math, Zhanjiang 524088, Guangdong, Peoples R China
关键词
ODE; Solution; linear equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that liner equations {Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) t(k)dt = phi(nu+1)(t(1)) 1/1 !Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) (t(1) - t)t(k)dt = phi(nu+2)(t(1)) 1/(nu-1)!Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) (t(1) - t)(nu-1) t(k)dt = phi(2 nu)(t(1)) determined polynomial Q(nu-1)(t) = alpha(0) + alpha(1)t + ... +alpha(v-1)t(nu-1) can well approximate to simplex integral phi(nu)(t) = 1/(nu-1)! integral(t1)(t0) y(xi)(t-xi)(nu-1) d xi in mall interval [t(0), t(1)]. Altogether with :recursive relations, we can solve ODE of the form P(n)y((n)) + P(n-1)y((n-1)) + ... + P(1)y' + P(0)y = g(t), where P-n(t), Pn-1(t), ..., P-1(t), P-0(t) are arbitrary degree polynomials. Numerical example about Airy equation illustrates the efficiency of this technique.
引用
收藏
页码:465 / 468
页数:4
相关论文
共 50 条
  • [21] Solving Linear Differential Equations
    Nguyen, K. A.
    van der Put, M.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 173 - 208
  • [22] Symmetries of linear ordinary differential equations
    Athorne, C.
    Journal of Physics A: Mathematical and General, 30 (13):
  • [23] PARTICULAR INTEGRALS FOR LINEAR DIFFERENTIAL EQUATIONS
    BURNS, JC
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 98 - &
  • [24] Solving Ordinary Differential Equations With Adaptive Differential Evolution
    Zhang, Zijia
    Cai, Yaoming
    Zhang, Dongfang
    IEEE ACCESS, 2020, 8 : 128908 - 128922
  • [25] LINEAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS
    STRAUSS, A
    YORKE, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (02) : 255 - &
  • [26] Symmetries of linear ordinary differential equations
    Athorne, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13): : 4639 - 4649
  • [27] Reservoir Computing for Solving Ordinary Differential Equations
    Mattheakis, Marios
    Joy, Hayden
    Protopapas, Pavlos
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (01)
  • [28] SOLVING ORDINARY DIFFERENTIAL-EQUATIONS WITH DISCONTINUITIES
    GEAR, CW
    OSTERBY, O
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (01): : 23 - 44
  • [29] SOLVING ORDINARY DIFFERENTIAL EQUATIONS ON HOMOGENEOUS SPACES
    SHAPIRO, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 390 - &
  • [30] A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method
    Sevastianov, L. A.
    Lovetskiy, K. P.
    Kulyabov, D. S.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2023, 23 (01): : 36 - 47