Hydrothermal carbonization of waste biomass: An experimental comparison between process layouts

被引:9
|
作者
Papa, Alessandro Antonio [1 ]
Taglieri, Luca [1 ]
Gallifuoco, Alberto [1 ]
机构
[1] Univ Aquila, Dept Ind & Informat Engn & Econ, Via G Gronchi 18, I-67100 Laquila, Italy
关键词
Waste-to-energy; Biomass fuel; Hydrothermal carbonization; Process layout assessment; Flash expansion; REMEDIATION;
D O I
10.1016/j.wasman.2020.06.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper contributes to the knowledge on waste biomass conversion processes occurring in the presence of hot compressed water. The experimental procedure detailed herein assesses different process schemes based on the low-temperature reaction known as hydrothermal carbonization. The performances of two lab-scale reactor configurations, with and without a downstream flash expansion step, were evaluated and compared. Each setup was tested with six different types of waste biomass. Fir, beech, and olive prunings are representative of lignocellulosic raw materials, while potato, pea, and carrot are representative of non-lignocellulosic wastes from processing in the local agro-food industry. The batch reactions (200 degrees C, water/solid = 7/1) were carried out for up to 120 min. The hydrochars were characterized by elemental composition, humidity, heating value, and mass and energy yields. The extent of difference between the results obtained for the two procedures varied significantly with the material treated. At a residence time of 30 min, the solid yields increased due to expansion, ranging from 10 to 36% for lignocellulosic material and 50 to 220% for agro-food industry scraps. The downstream flash expansion step causes an increase of the solid yields, especially for hydrochars from lignocellulosic materials, leading to higher energy recovered compared to the configuration without expansion. Lignocellulosic and agro-food wastes behaved dissimilarly, likely because of different hydrothermal reaction pathways. The additional expansion step can considerably increase the efficiency of energy recovery in full-scale plants, the extent of which depends on the biomass waste substrate used. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 50 条
  • [21] Fate of biomass inorganic elements during hydrothermal carbonization: an experimental study on agro-food waste
    Michel, Julie
    Rivas-Arrieta, Maria J.
    Boren, Eleonora
    Simonin, Loic
    Kennedy, Maria
    Dupont, Capucine
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (01) : 845 - 860
  • [22] Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass
    Hu, Bo
    Wang, Kan
    Wu, Liheng
    Yu, Shu-Hong
    Antonietti, Markus
    Titirici, Maria-Magdalena
    ADVANCED MATERIALS, 2010, 22 (07) : 813 - 828
  • [23] Hydrothermal Carbonization of Waste Biomass: A Review of Hydrochar Preparation and Environmental Application
    Petrovic, Jelena
    Ercegovic, Marija
    Simic, Marija
    Koprivica, Marija
    Dimitrijevic, Jelena
    Jovanovic, Aleksandar
    Jankovic Pantic, Jovana
    PROCESSES, 2024, 12 (01)
  • [24] Production of solid biochar fuel from waste biomass by hydrothermal carbonization
    Liu, Zhengang
    Quek, Augustine
    Hoekman, S. Kent
    Balasubramanian, R.
    FUEL, 2013, 103 : 943 - 949
  • [25] Hydrocoals from waste biomass via catalytic hydrothermal carbonization processing
    Alper, Koray
    Meng, Xianzhi
    Ercan, Betul
    Tekin, Kubilay
    Karagoz, Selhan
    Ragauskas, Arthur J.
    BIOMASS CONVERSION AND BIOREFINERY, 2024,
  • [26] Hydrothermal Carbonization of Waste Babassu Coconut Biomass for Solid Fuel Production
    Costa, R. S.
    Vieira, L. H. S.
    Ghosh, A.
    Santos, A. M. S.
    Ferreira, O. P.
    Viana, B. C.
    REVISTA VIRTUAL DE QUIMICA, 2019, 11 (03) : 626 - 641
  • [27] Hydrothermal Carbonization of Biomass: A Review
    A. Yu. Krylova
    V. M. Zaitchenko
    Solid Fuel Chemistry, 2018, 52 : 91 - 103
  • [28] Hydrothermal carbonization of biomass: a commentary
    Supee, Aiman Hakin
    Zaini, Muhammad Abbas Ahmad
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2024, 32 (02) : 119 - 127
  • [29] Hydrothermal carbonization of lignocellulosic biomass
    Xiao, Ling-Ping
    Shi, Zheng-Jun
    Xu, Feng
    Sun, Run-Cang
    BIORESOURCE TECHNOLOGY, 2012, 118 : 619 - 623
  • [30] Hydrothermal Carbonization of Biomass: A Review
    Krylova, A. Yu.
    Zaitchenko, V. M.
    SOLID FUEL CHEMISTRY, 2018, 52 (02) : 91 - 103