EDTA-derived Co-N-C and Fe-N-C electro-catalysts for the oxygen reduction reaction in acid environment

被引:40
|
作者
Lo Vecchio, Carmelo [1 ]
Arico, Antonino Salvatore [1 ]
Monforte, Giuseppe [1 ]
Baglio, Vincenzo [1 ]
机构
[1] Ist Tecnol Avanzate Energia Nicola Giordano ITAE, CNR, Via Salita Santa Lucia Contesse 5, I-98126 Messina, Italy
关键词
Non precious metal catalysts; ORR; Methanol tolerance; CoNC; FeNC; EDTA; METHANOL FUEL-CELLS; METAL-ORGANIC FRAMEWORKS; DOPED CARBON; MESOPOROUS CARBON; PERFORMANCE ANALYSIS; ALKALINE MEDIA; AIR ELECTRODES; NITROGEN; ELECTROCATALYSTS; TOLERANCE;
D O I
10.1016/j.renene.2017.12.084
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Here, in-house Co-N - and Fe-N-C have been prepared by, first, chelating the metals (Co or Fe) with ethylene diamine tetra acetic acid, known as EDTA (nitrogen precursor). UV-Visible (UV-Vis) spectrometry has been used to ensure the chelated metal formation. In the next step, the chelated metals have been deposited on a high surface area oxidized carbon support to increase the electrical conductivity. The latter composite material has been thermally treated at 800 degrees C (CoNC8 and FeNC8) or 1000 degrees C (CoNC10 and FeNC10) in nitrogen atmosphere in order to create the catalytic sites that will be able to perform the oxygen reduction reaction (ORR) in the acid medium. Electrochemical tests have been carried out to investigate the activity and durability of the electro-catalysts for the ORR. Methanol tolerance properties have been also evaluated for a possible application in direct methanol fuel cells. It appears that FeNC8 is the most active electrocatalyst in the presence of methanol in the base electrolyte, thus showing promising characteristics for direct methanol fuel cells. Instead, stability tests of these metal nitrogen catalysts indicate the best resistance to corrosion for the catalysts treated at 1000 degrees C. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 50 条
  • [11] Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Lian, Yuebin
    Xu, Jinnan
    Zhou, Wangkai
    Lin, Yao
    Bai, Jirong
    MOLECULES, 2024, 29 (04):
  • [12] Theoretical study of the oxygen reduction reaction on Ni-N-C and Co-N-C catalysts derived from ZIF-8
    Liu, Bihe
    Ren, Xuefeng
    Lv, Qianyuan
    Wang, Yiran
    Liu, Anmin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 8857 - 8870
  • [13] Sodium ferric EDTA-derived Fe-N-C material for selectively electrocatalytic synthesis of hydrogen peroxide
    Yan, Xiang-Hui
    Meng, Ziwei
    Liu, Jia
    Xue, Tong
    MATERIALS LETTERS, 2018, 217 : 171 - 173
  • [14] Reinforced atomically dispersed Fe-N-C catalysts derived from petroleum asphalt for oxygen reduction reaction
    Zhao, Qingshan
    Tan, Xiaojie
    Ma, Tianwen
    Cao, Fengliang
    Xia, Zhengzheng
    Liu, Hui
    Ning, Hui
    Li, Zhongtao
    Hu, Han
    Wu, Mingbo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 587 : 810 - 819
  • [15] A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction
    Bezerra, Cicero W. B.
    Zhang, Lei
    Lee, Kunchan
    Liu, Hansan
    Marques, Aldalea L. B.
    Marques, Edmar P.
    Wang, Haijiang
    Zhang, Jiujun
    ELECTROCHIMICA ACTA, 2008, 53 (15) : 4937 - 4951
  • [16] Multiscale porous Fe-N-C networks as highly efficient catalysts for the oxygen reduction reaction
    Li, Ying
    Liu, Tong
    Yang, Wenxiu
    Zhu, Zhijun
    Zhai, Yanling
    Gu, Wenling
    Zhu, Chengzhou
    NANOSCALE, 2019, 11 (41) : 19506 - 19511
  • [17] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [18] Potential-Dependent Active Moiety of Fe-N-C Catalysts for the Oxygen Reduction Reaction
    Liu, Kang
    Fu, Junwei
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Zhu, Li
    Wang, Ye
    Lin, Zhang
    Sun, Yifei
    Cortes, Emiliano
    Liu, Min
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (15): : 3749 - 3756
  • [19] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [20] Degradation Mechanisms and Durability Improvement Strategies of Fe-N-C Catalysts for Oxygen Reduction Reaction
    Li, Longhao
    Zhou, Wei
    Xie, Liang
    Yang, Chaowei
    Meng, Xiaoxiao
    Gao, Jihui
    PROGRESS IN CHEMISTRY, 2024, 36 (03) : 376 - 392