Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization

被引:58
|
作者
Zhu, Yueshuai [1 ]
Zhang, Gujia [1 ]
Xu, Chao [1 ]
Wang, Lianzhou [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
关键词
graphene; imperfect hollow shells; interconnection; unobstructed diffusion; capacitive deionization; ACTIVATED CARBON; POROUS GRAPHENE; SURFACE-AREA; 3D GRAPHENE; MESOPOROUS CARBON; ELECTRODE; DESALINATION; WATER; FABRICATION; NANOSHEETS;
D O I
10.1021/acsami.0c08509
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical capacitive deionization (CDI) is a promising technology for distributed and energy-efficient water desalination. The development of high-performance capacitive electrodes is critical for enhancing CDI properties and scaling up its applications. Herein, a three-dimensional graphene porous architecture with high CDI performance is successfully constructed by assembling intentionally designed incomplete graphene-based spherical hollow shells. Small graphene oxide (GO) sheets are purposely adopted to prepare sphere shells by wrapping the surface of polystyrene sphere templates. Because the small-sized GO sheets cannot enwrap the spherical templates seamlessly, a unique graphene hollow shell structure with integrally interconnected feature forms upon removal of the templates. Compared to control samples with typical isolated pore structure (3DGA-C) prepared with commonly used large-sized GO sheets, such open and interconnected porous architectures (3DGA-OP) greatly increase their accessibility of specific surface area and pore volume, enabling superior electrochemical performance. The optimized CDI capacities of 3DGA-OP electrodes reach up to 14.4 mg.g(-1) in NaCl aqueous of 500 mg.L-1 at 1.2 V, which is about 2 times the 3DGA-C ones (6.7 mg.g(-1)) and exceeds the CDI values of most reported pure graphene electrodes under the same experimental conditions. This strategy of improving the open interconnectivity between pores illuminates new avenues for developing high performance CDI porous electrodes assembled from two-dimensional materials.
引用
收藏
页码:29706 / 29716
页数:11
相关论文
共 50 条
  • [11] Facile synthesis of novel graphene sponge for high performance capacitive deionization
    Xingtao Xu
    Likun Pan
    Yong Liu
    Ting Lu
    Zhuo Sun
    Daniel H. C. Chua
    Scientific Reports, 5
  • [12] Surfactant-assisted freeze-drying synthesis of porous graphene for high-performance capacitive deionization
    Wang, Peng-Hui
    Yan, Huan
    Xue, Yifei
    Lu, Guoqian
    Ni, Wei
    Xu, Min
    Yan, Yi-Ming
    DESALINATION AND WATER TREATMENT, 2017, 84 : 8 - 18
  • [13] Sulfonated Graphene as Cation-Selective Coating: A New Strategy for High-Performance Membrane Capacitive Deionization
    Qian, Bingqing
    Wang, Gang
    Ling, Zheng
    Dong, Qiang
    Wu, Tingting
    Zhang, Xu
    Qiu, Jieshan
    ADVANCED MATERIALS INTERFACES, 2015, 2 (16):
  • [14] Partially reduced holey graphene oxide for high performance capacitive deionization
    Wang, Rui
    Fang, Biao
    Liang, Han
    Zhao, Chenpeng
    Mo, Runwei
    CHEMICAL ENGINEERING SCIENCE, 2025, 301
  • [15] Facile synthesis of novel graphene sponge for high performance capacitive deionization
    Xu, Xingtao
    Pan, Likun
    Liu, Yong
    Lu, Ting
    Sun, Zhuo
    Chua, Daniel H. C.
    SCIENTIFIC REPORTS, 2015, 5
  • [16] Interconnected N-doped MXene spherical shells for highly efficient capacitive deionization
    Zhang, Gujia
    Wang, Luhua
    Sa, Rongjian
    Xu, Chao
    Li, Zhaohui
    Wang, Lianzhou
    ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (01) : 204 - 213
  • [17] Vertically Aligned Bismuthene Nanosheets on MXene for High-Performance Capacitive Deionization
    Gong, Siqi
    Liu, Huibin
    Zhao, Fan
    Zhang, Yaning
    Xu, Huiting
    Li, Meng
    Qi, Junjie
    Wang, Honghai
    Li, Chunli
    Peng, Wenchao
    Fan, Xiaobin
    Liu, Jiapeng
    ACS NANO, 2023, 17 (05) : 4843 - 4853
  • [18] A Brief Review on High-Performance Capacitive Deionization Enabled by Intercalation Electrodes
    Liu, Zhenzhen
    Shang, Xu
    Li, Haibo
    Liu, Yong
    GLOBAL CHALLENGES, 2021, 5 (01)
  • [19] Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water
    Yin, Huajie
    Zhao, Shenlong
    Wan, Jiawei
    Tang, Hongjie
    Chang, Lin
    He, Liangcan
    Zhao, Huijun
    Gao, Yan
    Tang, Zhiyong
    ADVANCED MATERIALS, 2013, 25 (43) : 6270 - 6276
  • [20] Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization
    Mi, Mengjuan
    Liu, Xiaojun
    Kong, Weiqing
    Ge, Yongjie
    Dang, Weiqi
    Hu, Jiawen
    DESALINATION, 2019, 464 : 18 - 24