Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization

被引:58
|
作者
Zhu, Yueshuai [1 ]
Zhang, Gujia [1 ]
Xu, Chao [1 ]
Wang, Lianzhou [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
关键词
graphene; imperfect hollow shells; interconnection; unobstructed diffusion; capacitive deionization; ACTIVATED CARBON; POROUS GRAPHENE; SURFACE-AREA; 3D GRAPHENE; MESOPOROUS CARBON; ELECTRODE; DESALINATION; WATER; FABRICATION; NANOSHEETS;
D O I
10.1021/acsami.0c08509
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical capacitive deionization (CDI) is a promising technology for distributed and energy-efficient water desalination. The development of high-performance capacitive electrodes is critical for enhancing CDI properties and scaling up its applications. Herein, a three-dimensional graphene porous architecture with high CDI performance is successfully constructed by assembling intentionally designed incomplete graphene-based spherical hollow shells. Small graphene oxide (GO) sheets are purposely adopted to prepare sphere shells by wrapping the surface of polystyrene sphere templates. Because the small-sized GO sheets cannot enwrap the spherical templates seamlessly, a unique graphene hollow shell structure with integrally interconnected feature forms upon removal of the templates. Compared to control samples with typical isolated pore structure (3DGA-C) prepared with commonly used large-sized GO sheets, such open and interconnected porous architectures (3DGA-OP) greatly increase their accessibility of specific surface area and pore volume, enabling superior electrochemical performance. The optimized CDI capacities of 3DGA-OP electrodes reach up to 14.4 mg.g(-1) in NaCl aqueous of 500 mg.L-1 at 1.2 V, which is about 2 times the 3DGA-C ones (6.7 mg.g(-1)) and exceeds the CDI values of most reported pure graphene electrodes under the same experimental conditions. This strategy of improving the open interconnectivity between pores illuminates new avenues for developing high performance CDI porous electrodes assembled from two-dimensional materials.
引用
收藏
页码:29706 / 29716
页数:11
相关论文
共 50 条
  • [1] 3D interconnected porous graphene architecture as a high-performance capacitive deionization electrode
    Liu, Qilin
    Tan, Guangqun
    Lei, Yan
    Xiao, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 336
  • [2] Utilization of peanut shells for the fabrication of high-performance activated carbon electrodes in capacitive deionization
    Yan, Haoran
    Deng, Miao
    Qu, Ke
    Li, Qianlan
    Huan, Caijuan
    Xiong, Weiwei
    Wu, Jinchi
    Luo, Boyu
    Xiong, Weibo
    IONICS, 2023, 29 (12) : 5111 - 5122
  • [3] Utilization of peanut shells for the fabrication of high-performance activated carbon electrodes in capacitive deionization
    Haoran Yan
    Miao Deng
    Ke Qu
    Qianlan Li
    Caijuan Huan
    Weiwei Xiong
    Jinchi Wu
    Boyu Luo
    Weibo Xiong
    Ionics, 2023, 29 : 5111 - 5122
  • [4] Distillers’ grains carbon for high-performance capacitive deionization
    Chen, Mingyang
    Liu, Weifeng
    Yu, Tianchao
    Liu, Bingbing
    Wang, Meiling
    Fu, Dongju
    Xue, Jinbo
    Wen, Hairong
    Liu, Xuguang
    Separation and Purification Technology, 2025, 359
  • [5] Dimensional optimization enables high-performance capacitive deionization
    Wang, Ronghao
    Sun, Kaiwen
    Zhang, Yuhao
    Qian, Chengfei
    Bao, Weizhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (12) : 6414 - 6441
  • [6] Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization
    Wang, Hui
    Shi, Liyi
    Yan, Tingting
    Zhang, Jianping
    Zhong, Qingdong
    Zhang, Dengsong
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) : 4739 - 4750
  • [7] Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization
    Xu, Xingtao
    Liu, Yong
    Lu, Ting
    Sun, Zhuo
    Chua, Daniel H. C.
    Pan, Likun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (25) : 13418 - 13425
  • [8] Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization
    Gu, Xiaoyu
    Yang, Yu
    Hu, Yang
    Hu, Meng
    Huang, Jian
    Wang, Chaoyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (11) : 5866 - 5874
  • [9] Surface-microporous graphene for high-performance capacitive deionization under ultralow saline concentration
    Chang, Liang
    Hu, Yun Hang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 125 : 135 - 140
  • [10] High-performance activated carbon from polyaniline for capacitive deionization
    Zornitta, Rafael L.
    Garcia-Mateos, Francisco J.
    Lado, Julio J.
    Rodriguez-Mirasol, Jose
    Cordero, Tomas
    Hammer, Peter
    Ruotolo, Luis A. M.
    CARBON, 2017, 123 : 318 - 333