Existence for semilinear equations on exterior domains

被引:4
|
作者
Iaia, Joseph A. [1 ]
机构
[1] Univ North Texas, Dept Math, Denton, TX 76203 USA
关键词
exterior domains; semilinear; superlinear; radial; SCALAR FIELD-EQUATIONS; SEMIPOSITONE PROBLEMS; RADIAL SOLUTIONS; ZEROS;
D O I
10.14232/ejqtde.2016.1.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study radial solutions of Delta u + K (r) f (u) = 0 on the exterior of the ball of radius R > 0 centered at the origin in RN where f is odd with f < 0 on (0, beta), f > 0 on (beta, infinity), and f superlinear. The function K (r) is assumed to be positive and K (r) -> 0 as r -> infinity. We prove existence of an infinite number of radial solutions with u -> 0 as r -> infinity when K (r) similar to r(-alpha) with N < alpha < 2 (N - 1)
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条