Diophantine triples with values in binary recurrences

被引:0
|
作者
Fuchs, Clemens [1 ]
Luca, Florian [2 ]
Szalay, Laszlo [3 ]
机构
[1] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58180, Michoacan, Mexico
[3] Univ W Hungary, Dept Math & Stat, H-9400 Sopron, Hungary
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study triples a, b and c of distinct positive integers such that ab + 1, ac + 1 and bc + 1 are all three members of the same binary recurrence sequence.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 50 条
  • [31] The problem of the extension of a parametric family of Diophantine triples
    Dujella, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (3-4): : 311 - 322
  • [32] On Diophantine, pronic and triangular triples of balancing numbers
    Rayaguru, Sai Gopal
    Panda, Gopal Krishna
    Togbe, Alain
    MATHEMATICAL COMMUNICATIONS, 2020, 25 (01) : 137 - 155
  • [33] Strong rational Diophantine D(q)-triples
    Dujella, Andrej
    Paganin, Matteo
    Sadek, Mohammad
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (03): : 505 - 511
  • [34] Diophantine triples and K3 surfaces
    Kazalicki, Matija
    Naskrecki, Bartosz
    JOURNAL OF NUMBER THEORY, 2022, 236 : 41 - 70
  • [35] A Diophantine Equation Concerning Linear Recurrences
    László Szalay
    Periodica Mathematica Hungarica, 1997, 35 (1-2) : 121 - 125
  • [36] Diophantine quintuples containing triples of the first kind
    David J. Platt
    Timothy S. Trudgian
    Periodica Mathematica Hungarica, 2016, 72 : 235 - 242
  • [37] On k- generalized Fibonacci Diophantine triples
    Irmak, Nurettin
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 203 - 216
  • [38] Diophantine triples in a Lucas-Lehmer sequence
    Gueth, Krisztian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2018, 49 : 85 - 100
  • [39] ON THE D(4)-DIOPHANTINE TRIPLES OF FIBONACCI NUMBERS
    Rihane, Salah Eddine
    Hernane, Mohand Ouamar
    Togbe, Alain
    FIBONACCI QUARTERLY, 2018, 56 (01): : 63 - 74
  • [40] Diophantine triples with largest two elements in common
    Mihai Cipu
    Andrej Dujella
    Yasutsugu Fujita
    Periodica Mathematica Hungarica, 2021, 82 : 56 - 68