Diophantine triples with values in binary recurrences

被引:0
|
作者
Fuchs, Clemens [1 ]
Luca, Florian [2 ]
Szalay, Laszlo [3 ]
机构
[1] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58180, Michoacan, Mexico
[3] Univ W Hungary, Dept Math & Stat, H-9400 Sopron, Hungary
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study triples a, b and c of distinct positive integers such that ab + 1, ac + 1 and bc + 1 are all three members of the same binary recurrence sequence.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 50 条
  • [1] Diophantine triples with distinct binary recurrences
    Luca, Florian
    Szalay, Laszlo
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (01) : 255 - 264
  • [2] A polynomial variant of diophantine triples in linear recurrences
    Fuchs, Clemens
    Heintze, Sebastian
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (01) : 289 - 299
  • [3] Diophantine triples in linear recurrences of Pisot type
    Fuchs C.
    Hutle C.
    Luca F.
    Research in Number Theory, 2018, 4 (3)
  • [4] Correction to: A polynomial variant of diophantine triples in linear recurrences
    Clemens Fuchs
    Sebastian Heintze
    Periodica Mathematica Hungarica, 2023, 86 : 300 - 300
  • [5] Finiteness results for Diophantine triples with repdigit values
    Berczes, Attila
    Luca, Florian
    Pink, Istvan
    Ziegler, Volker
    ACTA ARITHMETICA, 2016, 172 (02) : 133 - 148
  • [6] Diophantine Equations Related with Linear Binary Recurrences
    Kilic, Emrah
    Akkus, Ilker
    Omur, Nese
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 11 - 26
  • [7] DIOPHANTINE TRIPLES WITH VALUES IN THE SEQUENCES OF FIBONACCI AND LUCAS NUMBERS
    Luca, Florian
    Munagi, Augustine O.
    GLASNIK MATEMATICKI, 2017, 52 (01) : 23 - 43
  • [8] Diophantine equations with products of consecutive members of binary recurrences
    Berczes, Attila
    Bilu, Yuri F.
    Luca, Florian
    RAMANUJAN JOURNAL, 2018, 46 (01): : 49 - 75
  • [9] Diophantine equations with products of consecutive members of binary recurrences
    Attila Bérczes
    Yuri F. Bilu
    Florian Luca
    The Ramanujan Journal, 2018, 46 : 49 - 75
  • [10] Strong diophantine triples
    Dujella, Andrej
    Petricevic, Vinko
    EXPERIMENTAL MATHEMATICS, 2008, 17 (01) : 83 - 89