Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space

被引:85
|
作者
Corsato, Chiara [1 ]
Obersnel, Franco [1 ]
Omari, Pierpaolo [1 ]
Rivetti, Sabrina [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词
Mean curvature; Minkowski space; Quasilinear elliptic equation; Dirichlet boundary condition; Positive solution; Existence; Multiplicity; Non-existence; Topological degree; Critical point theory; LOCAL SUPERLINEARITY; HYPERSURFACES; SUBLINEARITY;
D O I
10.1016/j.jmaa.2013.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space {-div(del u/root 1-vertical bar del u vertical bar(2)) = f(x, u, del u) in Omega, u = 0 on partial derivative Omega. Here Omega is a bounded regular domain in R-N and the function f = f(x, s, xi) is either sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines topological and variational methods. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条