Class-Aware Contrastive Semi-Supervised Learning

被引:42
|
作者
Yang, Fan [2 ]
Wu, Kai [1 ]
Zhang, Shuyi [1 ]
Jiang, Guannan [4 ]
Liu, Yong [1 ]
Zheng, Feng [3 ]
Zhang, Wei [4 ]
Wang, Chengjie [1 ]
Zeng, Long [2 ]
机构
[1] Tencent Youtu Lab, Shenzhen, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen, Peoples R China
[4] CATL, Xining, Peoples R China
关键词
D O I
10.1109/CVPR52688.2022.01402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pseudo-label-based semi-supervised learning (SSL) has achieved great success on raw data utilization. However, its training procedure suffers from confirmation bias due to the noise contained in self-generated artificial labels. Moreover, the model's judgment becomes noisier in real-world applications with extensive out-of-distribution data. To address this issue, we propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL), which is a drop-in helper to improve the pseudo-label quality and enhance the model's robustness in the real-world setting. Rather than treating real-world data as a union set, our method separately handles reliable in-distribution data with class-wise clustering for blending into downstream tasks and noisy out-of-distribution data with image-wise contrastive for better generalization. Furthermore, by applying target reweighting, we successfully emphasize clean label learning and simultaneously reduce noisy label learning. Despite its simplicity, our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 [18] and STL10 [8]. On the real-world dataset Semi-iNat 2021 [27], we improve FixMatch [25] by 9.80% and CoMatch [19] by 3.18%. Code is available https://github.com/TencentYoutuResearch/Classification-SemiCLS.
引用
收藏
页码:14401 / 14410
页数:10
相关论文
共 50 条
  • [11] A difference enhancement and class-aware rebalancing semi-supervised network for cropland semantic change detection
    Dai, Anjin
    Yang, Jianyu
    Zhang, Yuxuan
    Zhang, Tingting
    Tang, Kaixuan
    Xiao, Xiangyi
    Zhang, Shuoji
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 137
  • [12] Class-Aware Mutual Mixup with Triple Alignments for Semi-supervised Cross-Domain Segmentation
    Cai, Zhuotong
    Xin, Jingmin
    Zeng, Tianyi
    Dong, Siyuan
    Zheng, Nanning
    Duncan, James S.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 68 - 79
  • [13] A Probabilistic Contrastive Framework for Semi-Supervised Learning
    Lin, Huibin
    Zhang, Chun-Yang
    Wang, Shiping
    Guo, Wenzhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8767 - 8779
  • [14] Class-aware multi-level attention learning for semi-supervised breast cancer diagnosis under imbalanced label distribution
    Wen, Renjun
    Ma, Yufei
    Liu, Changdong
    Feng, Renwei
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025,
  • [15] OCI-SSL: Open Class-Imbalanced Semi-Supervised Learning With Contrastive Learning
    Zhou, Yuting
    Gao, Can
    Zhou, Jie
    Ding, Weiping
    Shen, Linlin
    Lai, Zhihui
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (06): : 3779 - 3792
  • [16] CONTRASTIVE LEARNING FOR ONLINE SEMI-SUPERVISED GENERAL CONTINUAL LEARNING
    Michel, Nicolas
    Negrel, Romain
    Chierchia, Giovanni
    Bercher, Jean-Francois
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1896 - 1900
  • [17] Contrastive Credibility Propagation for Reliable Semi-supervised Learning
    Kutt, Brody
    Ramteke, Pralay
    Mignot, Xavier
    Toman, Pamela
    Ramanan, Nandini
    Chhetri, Sujit Rokka
    Huang, Shan
    Du, Min
    Hewlett, William
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 21294 - 21303
  • [18] Semi-supervised vanishing point detection with contrastive learning
    Wang, Yukun
    Gu, Shuo
    Liu, Yinbo
    Kong, Hui
    PATTERN RECOGNITION, 2024, 153
  • [19] Semi-Supervised Class Incremental Learning
    Lechat, Alexis
    Herbin, Stephane
    Jurie, Frederic
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10383 - 10389
  • [20] CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation
    Singh, Ankit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34