A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae

被引:27
|
作者
Zhao, Fanglong [1 ]
Bai, Peng [1 ]
Nan, Weihua [1 ]
Li, Dashuai [1 ]
Zhang, Chuanbo [1 ]
Lu, Chunzhe [1 ]
Qi, Haishan [1 ]
Lu, Wenyu [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biol Engn, Tianjin, Peoples R China
[2] Tianjin Univ, Minist Educ, Key Lab Syst Bioengn, Tianjin, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, SynBio Res Platform, Tianjin, Peoples R China
关键词
protopanaxadiol; Saccharomyces cerevisiae; C-13-metabolic flux analysis; metabolic engineering; synthetic biology; GENE; BIOSYNTHESIS; OVEREXPRESSION; ACCUMULATION; PATHWAY; YEAST; LEADS;
D O I
10.1002/aic.16502
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ethanol is a more reduced substrate than sugars. Here, C-13-metabolic flux analysis (MFA) revealed that ethanol catabolism could supply sufficient acetyl-CoA and reducing equivalent for PPD biosynthesis. Then, we described modular engineering strategy to optimize a multigene pathway for protopanaxadiol (PPD) production from ethanol in Saccharomyces cerevisiae. PPD biosynthesis was divided into four modules: mevalonate (MVA) pathway module, triterpene biosynthesis module, sterol biosynthesis module, and acetyl-CoA formation module. Combinatorially overexpressing every gene in MVA pathway and optimizing metabolic balance in triterpene biosynthesis module led to significantly enhanced PPD production (42.34 mg/L/OD600). In sterol biosynthesis module, fine-tuning lanosterol synthase gene (ERG7) expression using TetR-TetO gene regulation system enabled further production improvement (51.26 mg/L/OD600). Furthermore, increasing cytoplasmic acetyl-CoA supply by overexpressing a Salmonella ACS (acetyl-CoA synthetase gene) mutant ACS(seL641P) improved PPD production to 66.55 mg/L/OD600. In 5 L bioreactor, PPD production of the best-performing strain WLT-MVA5 reached 8.09 g/L, which has been the highest titer of plant triterpene produced in yeast. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 866-874, 2019
引用
收藏
页码:866 / 874
页数:9
相关论文
共 50 条
  • [21] High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase
    Kondo, A
    Shigechi, H
    Abe, M
    Uyama, K
    Matsumoto, T
    Takahashi, S
    Ueda, M
    Tanaka, A
    Kishimoto, M
    Fukuda, H
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 58 (03) : 291 - 296
  • [22] High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase
    A. Kondo
    H. Shigechi
    M. Abe
    K. Uyama
    T. Matsumoto
    S. Takahashi
    M. Ueda
    A. Tanaka
    M. Kishimoto
    H. Fukuda
    Applied Microbiology and Biotechnology, 2002, 58 : 291 - 296
  • [23] Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol
    Zhao, Fanglong
    Du, Yanhui
    Bai, Peng
    Liu, Jingjing
    Lu, Wenyu
    Yuan, Yingjin
    BIORESOURCE TECHNOLOGY, 2017, 227 : 308 - 316
  • [24] High-level production of animal-free recombinant transferrin from Saccharomyces cerevisiae
    Christopher JA Finnis
    Tom Payne
    Joanna Hay
    Neil Dodsworth
    Diane Wilkinson
    Philip Morton
    Malcolm J Saxton
    David J Tooth
    Robert W Evans
    Hans Goldenberg
    Barbara Scheiber-Mojdehkar
    Nina Ternes
    Darrell Sleep
    Microbial Cell Factories, 9
  • [25] High-level production of animal-free recombinant transferrin from saccharomyces cerevisiae
    Finnis, Christopher J. A.
    Payne, Tom
    Hay, Joanna
    Dodsworth, Neil
    Wilkinson, Diane
    Morton, Philip
    Saxton, Malcolm J.
    Tooth, David J.
    Evans, Robert W.
    Goldenberg, Hans
    Scheiber-Mojdehkar, Barbara
    Ternes, Nina
    Sleep, Darrell
    MICROBIAL CELL FACTORIES, 2010, 9
  • [26] Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products
    Fernandez-Moya, Ruben
    Da Silva, Nancy A.
    FEMS YEAST RESEARCH, 2017, 17 (07)
  • [27] Metabolic Engineering of Saccharomyces cerevisiae for High-Level Friedelin via Genetic Manipulation
    Gao, Hai-Yun
    Zhao, Huan
    Hu, Tian-Yuan
    Jiang, Zhou-Qian
    Xia, Meng
    Zhang, Yi-Feng
    Lu, Yun
    Liu, Yuan
    Yin, Yan
    Chen, Xiao-Chao
    Luo, Yun-Feng
    Zhou, Jia-Wei
    Wang, Jia-Dian
    Gao, Jie
    Gao, Wei
    Huang, Lu-Qi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [28] Engineering Saccharomyces cerevisiae for next generation ethanol production
    den Haan, Riaan
    Kroukamp, Heinrich
    Mert, Marlin
    Bloom, Marinda
    Goergens, Johann F.
    van Zyl, Willem H.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (06) : 983 - 991
  • [29] Expression of lipase cDNA from Fusarium heterosporum by Saccharomyces cerevisiae: High-level production and purification
    Nagao, T
    Shimada, Y
    Sugihara, A
    Tominaga, Y
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1996, 81 (06): : 488 - 492
  • [30] Combined Biosynthetic Pathway Engineering and Storage Pool Expansion for High-Level Production of Ergosterol in Industrial Saccharomyces cerevisiae
    Sun, Zhi-Jiao
    Lian, Jia-Zhang
    Zhu, Li
    Jiang, Yi-Qi
    Li, Guo-Si
    Xue, Hai-Long
    Wu, Mian-Bin
    Yang, Li-Rong
    Lin, Jian-Ping
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9