Semigroups and rings whose zero products commute

被引:119
|
作者
Anderson, DD [1 ]
Camillo, V [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
zero divisors;
D O I
10.1080/00927879908826596
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a semigroup with zero 0 and let n greater than or equal to 2. We say that S satisfies ZC(n) if a(1) ... a(n) = 0 double right arrow a(sigma(1)) ... a(sigma(n)) = 0 for each permutation sigma is an element of S-n. A ring R satisfies ZC(n) if (R, .) satisfies ZC(n). We show that if S satisfies ZC(n) for a fixed n greater than or equal to 3, then S also satisfies ZC(n+1), but we give an example of a ring R with identity which satisfies ZC(2) but does not satisfy ZC(3). We show that a semigroup with no nonzero nilpotents satisfies ZC(n) for all n greater than or equal to 2 and investigate rings that satisfy ZC(n).
引用
收藏
页码:2847 / 2852
页数:6
相关论文
共 50 条