Claim Reserving Using Distance-Based Generalized Linear Models

被引:0
|
作者
Boj, Eva [1 ]
Costa, Teresa [1 ]
机构
[1] Univ Barcelona, Fac Econ & Empresa, Avinguda Diagonal 690, Barcelona 08034, Spain
来源
NONPARAMETRIC STATISTICS | 2016年 / 175卷
关键词
Reserving; Chain-Ladder; Generalized linear models; Distance-based prediction; dbstats;
D O I
10.1007/978-3-319-41582-6_10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized linear models (GLM) can be considered a stochastic version of the classical Chain-Ladder (CL) method of claim reserving in nonlife insurance. In particular, the deterministic CL model is reproduced when a GLM is fitted assuming over-dispersed Poisson error distribution and logarithmic link. Our aim is to propose the use of distance-based generalized linear models (DB-GLM) in the claim reserving problem. DB-GLM can be considered a generalization of the classical GLM to the distance-based analysis, because DB-GLM contains as a particular instance ordinary GLM when the Euclidean, l(2), metric is applied. Then, DB-GLM can be considered too a stochastic version of the CL claim reserving method. In DB-GLM, the only information required is a predictor distance matrix. DB-GLM can be fitted using the dbstats package for R. To estimate reserve distributions and standard errors, we propose a nonparametric bootstrap technique adequate to the distance-based regression models. We illustrate the method with a well-known actuarial dataset.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [21] Distance-based local linear regression for functional predictors
    Boj, Eva
    Delicado, Pedro
    Fortiana, Josep
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 429 - 437
  • [22] Weighted Distance-Based Models for Ranking Data Using the R Package rankdist
    Qian, Zhaozhi
    Yu, Philip L. H.
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 90 (05):
  • [23] Claim Reserving Estimation by Using the Chain Ladder Method
    Raeva, Elitsa
    Pavlov, Velizar
    Georgieva, Simona
    SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020), 2021, 2321
  • [24] Mixtures of Weighted Distance-Based Models for Ranking Data
    Lee, Paul H.
    Yu, Philip L. H.
    COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 517 - 524
  • [25] A mathematical analysis of EDAs with distance-based exponential models
    Unanue, Imanol
    Merino, Maria
    Lozano, Jose A.
    MEMETIC COMPUTING, 2022, 14 (03) : 305 - 334
  • [26] A Mathematical Analysis of EDAs with Distance-based Exponential Models
    Unanue, Imanol
    Merino, Maria
    Lozano, Jose A.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 429 - 430
  • [27] A mathematical analysis of EDAs with distance-based exponential models
    Imanol Unanue
    María Merino
    Jose A. Lozano
    Memetic Computing, 2022, 14 : 305 - 334
  • [28] Local linear functional regression based on weighted distance-based regression
    Boj, Eva
    Delicado, Pedro
    Fortiana, Josep
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 57 - +
  • [29] Distance-based clustering using QUBO formulations
    Nasa Matsumoto
    Yohei Hamakawa
    Kosuke Tatsumura
    Kazue Kudo
    Scientific Reports, 12
  • [30] Distance-based clustering using QUBO formulations
    Matsumoto, Nasa
    Hamakawa, Yohei
    Tatsumura, Kosuke
    Kudo, Kazue
    SCIENTIFIC REPORTS, 2022, 12 (01)