An Evaluation of Convolutional Neural Networks on Material Recognition

被引:0
|
作者
Shang, Xiaowei [1 ]
Xu, Ying [1 ]
Qi, Lin [1 ]
Madessa, Amanuel Hirpa [1 ]
Dong, Junyu [1 ]
机构
[1] Ocean Univ China, Dept Comp Sci & Technol, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
material recognition; deep learning; CNN architectures;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Material recognition from a single image is a challenging problem in the computer vision field due to the lack of reliable and discriminative features. Previous approaches employ off-the-shelf features such as SIFT descriptors or filter bank response to build material recognition systems. The recent success of deep convolutional neural networks (DCNNs) in object recognition motivated us to evaluate their performance in material recognition tasks. In this paper, we tested the generality of several CNN architectures, including VGGNet [31], GoogLeNet [32], Inception V3 [33] and ResNet [10], on two commonly used material datasets: Flickr Material Database (FMD) and Materials IN Context database (MINC). The results show that the best performing CNN architecture, i. e., Inception V3, achieves at least 5% boost on FMD compared with the other networks and almost reaches human's performance. The results on MINC-2500 also exhibit the state-of-the-art level.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Driving Posture Recognition by Convolutional Neural Networks
    Yan, Chao
    Zhang, Bailing
    Coenen, Frans
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 680 - 685
  • [32] Convolutional Neural Networks for the Recognition of Malayalam Characters
    Anil, R.
    Manjusha, K.
    Kumar, S. Sachin
    Soman, K. P.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 2, 2015, 328 : 493 - 500
  • [33] Personality Recognition Using Convolutional Neural Networks
    Gimenez, Maite
    Paredes, Roberto
    Rosso, Paolo
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 313 - 323
  • [34] Facial Expression Recognition with Convolutional Neural Networks
    Singh, Shekhar
    Nasoz, Fatma
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 324 - 328
  • [35] AN ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION
    Huang, Jui-Ting
    Li, Jinyu
    Gong, Yifan
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4989 - 4993
  • [36] Convolutional Neural Networks for Traffic Sign Recognition
    Wei, Zhonghua
    Gu, Heng
    Zhang, Ran
    Peng, Jingxuan
    Qui, Shi
    CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, 2021, : 399 - 409
  • [37] CONVOLUTIONAL NEURAL NETWORKS FOR NOISE SIGNAL RECOGNITION
    Portsev, Ruslan J.
    Makarenko, Andrey V.
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [38] Speech Recognition Based on Convolutional Neural Networks
    Du Guiming
    Wang Xia
    Wang Guangyan
    Zhang Yan
    Li Dan
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 708 - 711
  • [39] Ear Recognition In The Wild with Convolutional Neural Networks
    Ramos-Cooper, Solange
    Camara-Chavez, Guillermo
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [40] Recognition of flowers using convolutional neural networks
    Alkhonin, Abdulrahman
    Almutairi, Abdulelah
    Alburaidi, Abdulmajeed
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2020, 8 (03) : 186 - 197