Evolution of Three-dimensional Relativistic Ion Weibel Instability: Competition with Kink Instability

被引:2
|
作者
Takamoto, Makoto [1 ,2 ]
Matsumoto, Yosuke [3 ]
Kato, Tsunehiko N. [4 ]
机构
[1] NEC Corp Ltd, Cent Res Labs, Nakahara Ku, 1753 Shimonumabe, Kawasaki, Kanagawa 2118666, Japan
[2] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan
[3] Chiba Univ, Dept Phys, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
[4] Natl Astron Observ Japan, Ctr Computat Astrophys, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
来源
ASTROPHYSICAL JOURNAL | 2019年 / 877卷 / 02期
基金
日本学术振兴会;
关键词
gamma-ray burst: general; instabilities; magnetic fields; methods: numerical; plasmas; relativistic processes; COLLISIONLESS SHOCKS; PLASMAS; ACCELERATION; GENERATION; MECHANISM;
D O I
10.3847/1538-4357/ab1911
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we report our recent findings on the relativistic Weibel instability and its nonlinear saturation by performing numerical simulations of collisionless plasmas. Analysis of the obtained numerical results revealed that the nonlinear phase of the Weibel instability can be described by characteristic phases based on the Weibel filaments' current density in terms of particle and Alfven limit currents. We also analyzed the relativistic kink instability based on the energy principle in the magnetohydrodynamic (MHD) regime, and found that the Weibel filaments do not suffer from the kink-type instability in the MHD regime up to 1000 omega(-1)(p,i). This finding allowed a magnetic field to be sustained by relativistic Weibel instability that was stable enough to be a seed for MHD dynamos.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. I. INSTABILITY OF A STATIC COLUMN
    Mizuno, Yosuke
    Lyubarsky, Yuri
    Nishikawa, Ken-Ichi
    Hardee, Philip E.
    ASTROPHYSICAL JOURNAL, 2009, 700 (01): : 684 - 693
  • [32] Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion
    Kucharek, H
    Scholder, M
    Matthews, AP
    NONLINEAR PROCESSES IN GEOPHYSICS, 2000, 7 (3-4) : 167 - 172
  • [33] The Weibel instability in relativistic plasmas I. Linear theory
    Achterberg, A.
    Wiersma, J.
    Astronomy and Astrophysics, 2007, 475 (01): : 1 - 18
  • [34] Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
    Iwamoto, Masanori
    Amano, Takanobu
    Hoshino, Masahiro
    Matsumoto, Yosuke
    ASTROPHYSICAL JOURNAL, 2018, 858 (02):
  • [35] The relativistic kinetic Weibel instability: Comparison of different distribution functions
    Schaefer-Rolffs, U.
    Tautz, R. C.
    PHYSICS OF PLASMAS, 2008, 15 (06)
  • [36] The relativistic kinetic Weibel instability: General arguments and specific illustrations
    Schaefer-Rolffs, U
    Lerche, I
    Schlickeiser, R
    PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 9
  • [37] Nonlinear saturation of relativistic Weibel instability driven by thermal anisotropy
    Kaang, Helen H.
    Ryu, Chang-Mo
    Yoon, Peter H.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [38] The Weibel instability in relativistic plasmas - I. Linear theory
    Achterberg, A.
    Wiersma, J.
    ASTRONOMY & ASTROPHYSICS, 2007, 475 (01) : 1 - 18
  • [39] The effect of density gradient on the growth rate of relativistic Weibel instability
    Mahdavi, M.
    Azadboni, F. Khodadadi
    PHYSICS OF PLASMAS, 2014, 21 (02)
  • [40] Weibel instability of relativistic electron flows in a laser produced plasma
    Upadhyay, A
    Tripathi, VK
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (11) : 2357 - 2363