Probabilistic Image Diversification to Improve Segmentation in 3D Microscopy Image Data

被引:1
|
作者
Eschweiler, Dennis [1 ]
Schock, Justus [1 ]
Stegmaier, Johannes [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
关键词
Augmentation; Segmentation; 3D microscopy;
D O I
10.1007/978-3-031-16980-9_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The lack of fully-annotated data sets is one of the major limiting factors in the application of learning-based segmentation approaches for microscopy image data. Especially for 3D image data, generation of such annotations remains a challenge, increasing the demand for approaches making most out of existing annotations. We propose a probabilistic approach to increase image data diversity in small annotated data sets without further cost, to improve and evaluate segmentation approaches and ultimately contribute to an increased efficacy of available annotations. Different experiments show utilization for benchmarking, image data augmentation and test-time augmentation on the example of a deep learning-based 3D segmentation approach. Code is publicly available at https://github.com/stegmaierj/ImageDiversification.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [21] A hybrid framework for 3D medical image segmentation
    Chen, T
    Metaxas, D
    MEDICAL IMAGE ANALYSIS, 2005, 9 (06) : 547 - 565
  • [22] Image segmentation and 3D visualization for MRI mammography
    Li, LH
    Chua, Y
    Salem, AF
    Clark, RA
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 1780 - 1789
  • [23] Interactive 3D editing tools for image segmentation
    Kang, Y
    Engelke, K
    Kalender, WA
    MEDICAL IMAGE ANALYSIS, 2004, 8 (01) : 35 - 46
  • [24] 3D Capsule Networks for Brain Image Segmentation
    Avesta, A.
    Hui, Y.
    Aboian, M.
    Duncan, J.
    Krumholz, H. M.
    Aneja, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (05) : 562 - 568
  • [25] Virtual bacterium colony in 3D image segmentation
    Badura, Pawel
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 65 : 152 - 166
  • [26] Active Learning for Interactive 3D Image Segmentation
    Top, Andrew
    Hamarneh, Ghassan
    Abugharbieh, Rafeef
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT III, 2011, 6893 : 603 - +
  • [27] 3D IMAGE SEGMENTATION SUPPORTED BY A POINT CLOUD
    Kosa, Balazs
    Mikula, Karol
    Uba, Markjoe Olunna
    Weberling, Antonia
    Christodoulou, Neophytos
    Zernicka-Goetz, Magdalena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 971 - 985
  • [28] UNETR: Transformers for 3D Medical Image Segmentation
    Hatamizadeh, Ali
    Tang, Yucheng
    Nath, Vishwesh
    Yang, Dong
    Myronenko, Andriy
    Landman, Bennett
    Roth, Holger R.
    Xu, Daguang
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1748 - 1758
  • [29] Contrast 3D Echocardiographic Segmentation by Image Inversion
    Nasim, Ammara
    Idrees, Muhammad Qamar
    Rajpoot, Kashif
    17TH IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2014, 2014, : 177 - 181
  • [30] Backdoor Attack on 3D Grey Image Segmentation
    Xu, Honghui
    Cai, Zhipeng
    Xiong, Zuobin
    Li, Wei
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 708 - 717