Preparation of RGO/NiO Anode for Lithium-ion Batteries

被引:14
|
作者
Tian, Shiyi [1 ]
Zheng, Guoxu [2 ]
Liu, Qian [2 ]
Ren, Mingyuan [2 ]
Yin, Jinghua [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Software & Microelect, Harbin 150080, Heilongjiang, Peoples R China
来源
基金
黑龙江省自然科学基金; 中国博士后科学基金;
关键词
MOFs; RGO; NiO; LIBs; electrode materials; HOLLOW MICROSPHERES; GRAPHENE; NIO; STORAGE; NANOSTRUCTURES; FABRICATION; NANOSHEETS; NANOTUBES; ACID;
D O I
10.20964/2019.10.14
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As an efficient and stable energy storage device, lithium-ion batteries (LIBs) have become an important part of today's society and are widely used in production and life. The research on the performance of LIBs is also widely concerned by researchers. The electrode material that plays a decisive role in the performance of the battery is our key research object, and many kinds of new negative electrode materials have been explored. Metal organic frameworks (MOFs) are a type of coordination polymers that have attracted wide attention in recent years [1-2]. With MOFs as the precursor, porous metal oxides and porous carbon materials with a controllable structure can be obtained. As electrode materials, they can significantly improve the electrochemical performance of batteries. Therefore, MOFs have become the preferred material of our new electrode materials. In this paper, hydrothermal method is adopted to prepare spherical porous Ni-MOFs material, which is calcined into metal oxide NiO material, and then its electrical conductivity and electrochemical performance are improved on the basis of retaining spherical pore structure. At the constant current density of 1C, the reversible capacity of NiO material maintains stably at 160mAh/g and the coulomb efficiency reaches 97.12% at 200 circles. In this paper, Ni-MOFs is synthesized with graphene oxide (GO) to generalize GO/Ni-MOFs material, and then it is transformed into reduced graphene oxide (RGO) to obtain RGO/NiO. RGO acts as a soft protective layer of active substances, which greatly improves the structural stability of the electrode during charging and discharging process. At the constant current density of 1C and at 200 circles, the reversible capacity reaches 440mAh/g, the coulomb efficiency reaches 99.49%, and its multiplying power and impedance performance are also very out.
引用
收藏
页码:9459 / 9467
页数:9
相关论文
共 50 条
  • [31] VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries
    He, Guang
    Li, Longjun
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (28) : 14750 - 14758
  • [32] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    JournalofElectronicScienceandTechnology, 2018, 16 (01) : 57 - 68
  • [33] Silicene: A Promising Anode for Lithium-Ion Batteries
    Zhuang, Jincheng
    Xu, Xun
    Peleckis, Germanas
    Hao, Weichang
    Dou, Shi Xue
    Du, Yi
    ADVANCED MATERIALS, 2017, 29 (48)
  • [34] Silicon nanotube anode for lithium-ion batteries
    Wen, Zhenhai
    Lu, Ganhua
    Mao, Shun
    Kim, Haejune
    Cui, Shumao
    Yu, Kehan
    Huang, Xingkang
    Hurley, Patrick T.
    Mao, Ou
    Chen, Junhong
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 29 : 67 - 70
  • [35] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [36] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [37] Preparation of anode materials for lithium-ion batteries by spent carbon anode from electrolytic aluminum
    Zhao, Qiuping
    Wang, Yiru
    Dong, Hong
    Wang, Jie
    Fu, Xiaolan
    Cui, Xuchun
    Li, Shiyou
    Li, Chunlei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [38] Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    Zhang, Jian-Hui
    Fu, Yuan-Xiang
    APPLIED SURFACE SCIENCE, 2019, 465 : 470 - 477
  • [39] Preparation and characterization of basic carbonates as novel anode materials for lithium-ion batteries
    Shao, Lianyi
    Wu, Kaiqiang
    Jiang, Xinxin
    Shui, Miao
    Ma, Rui
    Lao, Mengmeng
    Lin, Xiaoting
    Wang, Dongjie
    Long, Nengbing
    Shu, Jie
    CERAMICS INTERNATIONAL, 2014, 40 (02) : 3105 - 3116
  • [40] Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries
    Wang, Yong
    Su, Fabing
    Wood, Colin D.
    Lee, Jim Yang
    Zhao, Xiu Song
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) : 2294 - 2300