共 50 条
EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway
被引:16
|作者:
Zhang, Chao
[1
]
Wang, Deng-Feng
[1
]
Zhang, Zhuang
[1
]
Han, Dong
[1
]
Yang, Kan
[1
]
机构:
[1] Zhengzhou Univ, Nanyang Cent Hosp, Nanyang Affiliated Hosp, Dept Cardiovasc Surg, Nanyang 473009, Henan Province, Peoples R China
关键词:
EGb;
761;
myocardial ischemia reperfusion injury;
microvascular endothelial cells;
hypoxia/reoxygenation (H/R) injury;
ataxia-telangiectasia mutated (ATM);
GINKGO-BILOBA;
MICROCIRCULATION;
HETEROGENEITY;
ACTIVATION;
APOPTOSIS;
ISCHEMIA;
P53;
D O I:
10.4014/jmb.1611.11024
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM,gamma-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM,gamma-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM,gamma-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.
引用
收藏
页码:584 / 590
页数:7
相关论文