The h(x)-Fibonacci Quaternion Polynomials: Some Combinatorial Properties

被引:0
|
作者
Catarino, Paula [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, UTAD, P-5001801 Vila Real, Portugal
关键词
Fibonacci polynomials; Fibonacci quaternion; Generating functions; K-FIBONACCI;
D O I
10.1007/s00006-015-0606-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the -Fibonacci quaternion polynomials and present some properties involving these polynomials, including the exponential and Poisson generating functions.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [41] Zonal polynomials with quaternion matrix arguments and their properties
    Li, Shao-ming
    Teng, Cheng-ye
    Wang, Qi
    2000, J Zhongshan Univ, Guangzhou, China (39):
  • [42] PROPERTIES OF POLYNOMIALS HAVING FIBONACCI NUMBERS FOR COEFFICIENTS
    LEHMER, DH
    LEHMER, E
    FIBONACCI QUARTERLY, 1983, 21 (01): : 62 - 64
  • [43] Some results on convolved (p, q)-Fibonacci polynomials
    Wang, Weiping
    Wang, Hui
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (05) : 340 - 356
  • [44] Some identities involving Fibonacci, Lucas polynomials and their applications
    Wang Tingting
    Zhang Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (01): : 95 - 103
  • [45] Vieta-Fibonacci-like polynomials and some identities
    Sriprad, Wanna
    Srisawat, Somnuk
    Naklor, Peesiri
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 97 - 108
  • [46] On some topological properties of the ring of polynomials in CpCp(X)
    Lazarev, V. R.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2010, (09): : 34 - 38
  • [47] Some combinatorial conjectures for shifted Jack polynomials
    Michel Lassalle
    Annals of Combinatorics, 1998, 2 (2) : 145 - 163
  • [48] Some properties of Padovan quaternion
    Gunay, Hasan
    Taskara, Necati
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [49] LOG-CONCAVITY AND COMBINATORIAL PROPERTIES OF FIBONACCI LATTICES
    BRENTI, F
    EUROPEAN JOURNAL OF COMBINATORICS, 1991, 12 (06) : 459 - 476
  • [50] On Properties of Bi-Periodic Fibonacci and Lucas Polynomials
    Yilmaz, Nazmiye
    Coskun, Arzu
    Taskara, Necati
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863