Image Style Transfer Using Convolutional Neural Networks

被引:2302
|
作者
Gatys, Leon A. [1 ,2 ,3 ]
Ecker, Alexander S. [1 ,2 ,4 ,5 ]
Bethge, Matthias [1 ,2 ,4 ]
机构
[1] Univ Tubingen, Ctr Integrat Neurosci, Tubingen, Germany
[2] Bernstein Ctr Computat Neurosci, Tubingen, Germany
[3] Univ Tubingen, Grad Sch Neural Informat Proc, Tubingen, Germany
[4] Max Planck Inst Biol Cybernet, Tubingen, Germany
[5] Baylor Coll Med, Houston, TX 77030 USA
关键词
TEXTURE SYNTHESIS;
D O I
10.1109/CVPR.2016.265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rendering the semantic content of an image in different styles is a difficult image processing task. Arguably, a major limiting factor for previous approaches has been the lack of image representations that explicitly represent semantic information and, thus, allow to separate image content from style. Here we use image representations derived from Convolutional Neural Networks optimised for object recognition, which make high level image information explicit. We introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new images of high perceptual quality that combine the content of an arbitrary photograph with the appearance of numerous well-known artworks. Our results provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.
引用
收藏
页码:2414 / 2423
页数:10
相关论文
共 50 条
  • [21] Deformable image registration using convolutional neural networks
    Eppenhof, Koen A. J.
    Lafarge, Maxime W.
    Moeskops, Pim
    Veta, Mitko
    Pluim, Josien P. W.
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [22] Electroencephalography Image Classification Using Convolutional Neural Networks
    Galety, Mohammad Gouse
    Al-Mukhtar, Firas
    Rofoo, Fanar
    Sriharsha, A., V
    Maaroof, Rebaz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INNOVATIONS IN COMPUTING RESEARCH (ICR'22), 2022, 1431 : 42 - 52
  • [23] Fruit Image Classification Using Convolutional Neural Networks
    Ashraf, Shawon
    Kadery, Ivan
    Chowdhury, Md Abdul Ahad
    Mahbub, Tahsin Zahin
    Rahman, Rashedur M.
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 51 - 70
  • [24] Fiber Image Classification Using Convolutional Neural Networks
    Wang, Xinxin
    Chen, Zhao
    Liu, Guohua
    Wan, Yan
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1214 - 1218
  • [25] Side-Scan Sonar Image Classification Based on Style Transfer and Pre-Trained Convolutional Neural Networks
    Ge, Qiang
    Ruan, Fengxue
    Qiao, Baojun
    Zhang, Qian
    Zuo, Xianyu
    Dang, Lanxue
    ELECTRONICS, 2021, 10 (15)
  • [26] 3D image augmentation using Neural Style Transfer and Generative Adversarial Networks
    Cuong Do
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [27] Image Captioning using Convolutional Neural Networks and Recurrent Neural Network
    Calvin, Rachel
    Suresh, Shravya
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [28] Cartoon-Style Image Rendering Transfer Based on Neural Networks
    Wang, Lei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [29] Medical Image Analysis using Deep Convolutional Neural Networks: CNN Architectures and Transfer Learning
    Dutta, Pronnoy
    Upadhyay, Pradumn
    De, Madhurima
    Khalkar, R. G.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 175 - 180
  • [30] Froth image analysis by use of transfer learning and convolutional neural networks
    Fu, Yihao
    Aldrich, Chris
    MINERALS ENGINEERING, 2018, 115 : 68 - 78