Semiparametric model for covariance regression analysis

被引:2
|
作者
Liu, Jin [1 ,2 ]
Ma, Yingying [3 ]
Wang, Hansheng [4 ]
机构
[1] Nankai Univ, LPMC, Sch Stat & Data Sci, Tianjin, Peoples R China
[2] Nankai Univ, KLMDASR, Tianjin, Peoples R China
[3] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China
[4] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Adjacency matrix; Covariance estimation; Covariance regression; Information criterion; Time varying coefficient; HIGH-DIMENSIONAL COVARIANCE; TIME-SERIES MODELS; MATRIX ESTIMATION; SELECTION; INFERENCE; RATES;
D O I
10.1016/j.csda.2019.106815
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimating covariance matrices is an important research topic in statistics and finance. A semiparametric model for covariance matrix estimation is proposed. Specifically, the covariance matrix is modeled as a polynomial function of the symmetric adjacency matrix with time varying parameters. The asymptotic properties for the time varying coefficient and the associated semiparametric covariance estimators are established. A Bayesian information criterion to select the order of the polynomial function is also investigated. Simulation studies and an empirical example are presented to illustrate the usefulness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Semiparametric model for covariance regression analysis
    Liu, Jin
    Ma, Yingying
    Wang, Hansheng
    Computational Statistics and Data Analysis, 2020, 142
  • [2] Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data
    Leng, Chenlei
    Zhang, Weiping
    Pan, Jianxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 181 - 193
  • [3] Estimation of semiparametric mixed analysis of covariance model
    Alao, Virgelio M.
    Lansangan, Joseph Ryan G.
    Barrios, Erniel B.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2301 - 2317
  • [4] Regression analysis for a semiparametric model with panel data
    Sun, LQ
    Zhou, X
    STATISTICS & PROBABILITY LETTERS, 2002, 58 (03) : 309 - 317
  • [5] Analysis of covariance with incomplete data via semiparametric model transformations
    Grigoletto, M
    Akritas, MG
    BIOMETRICS, 1999, 55 (04) : 1177 - 1187
  • [6] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [7] Semiparametric model for regression analysis with nonmonotone missing data
    Zhao, Yang
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (02): : 461 - 475
  • [8] Semiparametric model for regression analysis with nonmonotone missing data
    Yang Zhao
    Statistical Methods & Applications, 2021, 30 : 461 - 475
  • [9] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    Acta Mathematica Sinica,English Series, 2017, (06) : 748 - 760
  • [10] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760