An energy approach to space-time Galerkin BEM for wave propagation problems

被引:50
|
作者
Aimi, A. [1 ]
Diligenti, M. [1 ]
Guardasoni, C. [2 ]
Mazzieri, I. [3 ]
Panizzi, S. [1 ]
机构
[1] Univ Parma, Dept Math, I-43100 Parma, Italy
[2] Univ Milan, Dept Math, Milan, Italy
[3] Politecn Milan, Dept Math, I-20133 Milan, Italy
关键词
wave propagation; energy identity; boundary integral equation; weak formulation; Galerkin boundary element method; BOUNDARY-VALUE-PROBLEMS; CONVOLUTION QUADRATURE; NUMERICAL-INTEGRATION; SCATTERING; DIFFRACTION; FORMULATION; EQUATION; CRACK;
D O I
10.1002/nme.2660
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space-time weak formulation for I D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space-time Galerkin boundary element method applied to the energetic weak problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1196 / 1240
页数:45
相关论文
共 50 条
  • [21] NONRECIPROCAL WAVE PROPAGATION IN SPACE-TIME MODULATED MEDIA*
    Ammari, Habib
    Cao, Jinghao
    Hiltunen, Erik Orvehed
    MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1228 - 1250
  • [22] A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain
    Petersen, Steffen
    Farhat, Charbel
    Tezaur, Radek
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 275 - 295
  • [23] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [24] An efficient solver for space-time isogeometric Galerkin methods for parabolic problems
    Loli, Gabriele
    Montardini, Monica
    Sangalli, Giancarlo
    Tani, Mattia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (11) : 2586 - 2603
  • [25] Space-Time Petrov-Galerkin FEM for Fractional Diffusion Problems
    Duan, Beiping
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Zhou, Zhi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 1 - 20
  • [26] Space-time stochastic Galerkin boundary elements for acoustic scattering problems
    Gimperlein, Heiko
    Meyer, Fabian
    Oezdemir, Ceyhun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (15)
  • [27] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [28] An overview on a time discrete convolution—space collocation BEM for 2D exterior wave propagation problems
    Falletta S.
    Monegato G.
    Scuderi L.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) : 311 - 336
  • [29] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [30] Space-time collocation meshfree method for modeling 3D wave propagation problems
    Huang, Zhentian
    Lei, Dong
    Han, Zi
    Xie, Heping
    Zhu, Jianbo
    COMPUTATIONAL MECHANICS, 2024, 73 (01) : 89 - 104