Modeling graphs using dot product representations

被引:2
|
作者
Scheinerman, Edward R. [1 ]
Tucker, Kimberly [2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
关键词
Social networks; Dimension reduction; Vector representations of graphs;
D O I
10.1007/s00180-009-0158-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a simple (weighted) graph, or a collection of graphs on a common vertex set, we seek an assignment of vectors to the vertices such that the dot products of these vectors approximate the weight/frequency of the edges. By transforming vertices into (low dimensional) vectors, one can bring geometric methods to bear in the analysis of the graph(s). We illustrate our approach on the Mathematicians Collaboration Graph [Grossman (1996) The ErdAs number project, http://www.oakland.edu/enp ] and the times series of Interstate Alliance Graphs (Gibler and Sarkees in J Peace Res 41(2):211-222, 2004).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Graph Matching Based on Dot Product Representation of Graphs
    Tang, Jin
    Jiang, Bo
    Luo, Bin
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, 2011, 6658 : 175 - 184
  • [22] Statistical inference on random dot product graphs: A survey
    Athreya, Avanti
    Fishkind, Donniell E
    Tang, Minh
    Priebe, Carey E
    Park, Youngser
    Vogelstein, Joshua T.
    Levin, Keith
    Lyzinski, Vince
    Qin, Yichen
    Sussman, Daniel L
    Journal of Machine Learning Research, 2018, 18 : 1 - 92
  • [23] Statistical Inference on Random Dot Product Graphs: a Survey
    Athreya, Avanti
    Fishkind, Donniell E.
    Minh Tang
    Priebe, Carey E.
    Park, Youngser
    Vogelstein, Joshua T.
    Levin, Keith
    Lyzinski, Vince
    Qin, Yichen
    Sussman, Daniel L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [24] Optimal Bayesian estimation for random dot product graphs
    Xie, Fangzheng
    Xu, Yanxun
    BIOMETRIKA, 2020, 107 (04) : 875 - 889
  • [25] Remote Sensing Image Segmentation Using Super-Pixel and Dot Product Representation of Graphs
    Zhang Daming
    Zhang Xueyong
    Liu Huayong
    Li Lu
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [26] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya, A.
    Priebe, C. E.
    Tang, M.
    Lyzinski, V.
    Marchette, D. J.
    Sussman, D. L.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 1 - 18
  • [27] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya A.
    Priebe C.E.
    Tang M.
    Lyzinski V.
    Marchette D.J.
    Sussman D.L.
    Sankhya A, 2016, 78 (1): : 1 - 18
  • [28] Maximum Likelihood Embedding of Logistic Random Dot Product Graphs
    O'Connor, Luke J.
    Medard, Muriel
    Feizi, Soheil
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5289 - 5297
  • [29] Improved Representations using Augmented Graphs
    Gupta, Gagan Raj
    Pramanik, Soumajit
    Thummala, Milind
    Haldar, Anirban
    PROCEEDINGS OF 7TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA, CODS-COMAD 2024, 2024, : 212 - 216
  • [30] Labeling Dot-Cartesian and Dot-Lexicographic Product Graphs with a Condition at Distance Two
    Shao, Zhendong
    Averbakh, Igor
    Klavzar, Sandi
    COMPUTER JOURNAL, 2016, 59 (01): : 151 - 158