Maximally Asymmetric Multiple-Valued Functions

被引:7
|
作者
Butler, Jon T. [1 ]
Sasao, Tsutomu [2 ]
机构
[1] Naval Postgrad Sch, Dept Elect & Comp Engn, Monterey, CA 93943 USA
[2] Meiji Univ, Dept Comp Sci, Kawasaki, Kanagawa 2148571, Japan
来源
2019 IEEE 49TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL) | 2019年
基金
日本学术振兴会;
关键词
Asymmetric functions; maximally asymmetric functions; multiple-valued; symmetric functions; v-symmetry; vv-symmetry; partitions of integers; characterization and count; SEQUENCES;
D O I
10.1109/ISMVL.2019.00040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The asymmetry of a function f (x(1), x(2),., x(n)) is the fewest elements of the range of f that must be changed so that f becomes a symmetric function. The functions with maximal asymmetry for the case of r-valued n-variable functions have been characterized and counted for r = 2 in two previous papers. In this paper, we extend these results to r > 2. We do this for two types of symmetry, functions whose value is unchanged by 1) any permutation of the variable labels and by 2) any permutation of variable labels and variable values. We also derive the maximum possible asymmetry. We show that, as n -> infinity and r is fixed, the maximum asymmetry approaches (r - 1)r(n -1).
引用
收藏
页码:188 / 193
页数:6
相关论文
共 50 条
  • [11] Contribution to the Study of Multiple-valued Bent Functions
    Moraga, Claudio
    Stankovic, Milena
    Stankovic, Radomir S.
    Stojkovic, Suzana
    2013 IEEE 43RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2013), 2013, : 340 - 345
  • [12] Finding composition trees for multiple-valued functions
    Dubrova, EV
    Muzio, JC
    vonStengel, B
    27TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC - 1997 PROCEEDINGS, 1997, : 19 - 26
  • [13] Logic expressions of monotonic multiple-valued functions
    Nakashima, K
    Nakamura, Y
    Takagi, N
    1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 290 - 295
  • [14] Hyper-bent Multiple-Valued Functions
    Moraga, Claudio
    Stankovic, Milena
    Stankovic, Radomir S.
    Stojkovic, Suzana
    COMPUTER AIDED SYSTEMS THEORY, PT II, 2013, 8112 : 250 - 257
  • [15] On the Sensitivity of Boolean and Multiple-Valued Symmetric Functions
    Butler, Jon T.
    Sasao, Tsutomu
    2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), 2022, : 125 - 130
  • [16] DECOMPOSITION OF MULTIPLE-VALUED LOGIC FUNCTIONS.
    Fricke, Juergen
    Proceedings of The International Symposium on Multiple-Valued Logic, 1978, : 208 - 212
  • [17] Edge-valued decision diagrams for multiple-valued functions
    Stankovic, RS
    Astola, J
    34TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2004, : 229 - 234
  • [18] Boolean Functions with Multiple-Valued Walsh Spectra
    SUN Tianfeng
    HU Bin
    Chinese Journal of Electronics, 2019, 28 (06) : 1165 - 1169
  • [19] MAXIMUM PRINCIPLE FOR MULTIPLE-VALUED ANALYTIC FUNCTIONS
    WIDOM, H
    ACTA MATHEMATICA UPPSALA, 1971, 126 (1-2): : 63 - &
  • [20] Boolean Functions with Multiple-Valued Walsh Spectra
    Sun, Tianfeng
    Hu, Bin
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (06) : 1165 - 1169